
Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 1 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 1

Peter’s Professional Validation

User’s Guide

Click on any of these topics to jump to them:

 Validator Controls Adding

 About Conditions Properties

ABARoutingNumberValidator CharacterValidator CheckStateValidator

CompareToStringsValidator CompareToValueValidator CompareTwoFieldsValidator

CountSelectionsValidator CountTrueConditionsValidator CreditCardNumberValidator

CustomValidator DataTypeCheckValidator DifferenceValidator

DuplicateEntryValidator EmailAddressValidator IgnoreConditionValidator

ListSizeValidator MultipleRequiredControlsValidator MultiConditionValidator

RangeValidator RegexValidator

RequiredListValidator RequiredSelectionValidator RequiredTextValidator

SelectedIndexValidator SelectedIndexRangesValidator TextLengthValidator

UnwantedWordsValidator WordCountValidator

 Defining the Error Message and Associated Labels Properties

 ErrorFormatters: Customizing the Appearance of the Error Message Using Properties

 Other Validator Properties that Customize the Appearance

 Drawing The User’s Attention To The Error

 Changing When the Validator is Evaluated Enabler Validation Groups

 Submitting the Page Adding Buttons Client Side

 Additional Validation Topics Best Practices Working with ASP.NET Controls

 ValidationSummary Control Adding Using Properties

 CombinedErrorMessages Control Adding Using Properties

 RequiredFieldMarker Control Adding Properties

 RequiredFieldsDescription Control Adding Properties

 Page Level Properties and Methods

 JavaScript Support Functions

 Troubleshooting

 Table of Contents

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 2 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 2

Table of Contents

License Information...11

Platform Support ...11

Technical Support and Other Assistance...12
Troubleshooting Section of this Guide ..12
Developer’s Kit..12
PeterBlum.Com MessageBoard...12
Getting Product Updates..12
Technical Support ..12

WHAT DOES PETER’S DATA ENTRY SUITE DO?.. 14

OVERVIEW OF THE DES VALIDATION FRAMEWORK .. 17

Client-Side Validation Support ..18

Supported Data Entry Controls ...19

Evaluating Conditions ...20

Determining When Validators Fire..22

Error Messages ..23

Showing Errors ..24

ValidationSummary Control ..26

Showing the “Required Field” Marker..27

Submitting The Page ...28

The String Lookup System..29

Support for the Native Validation Framework...30

Support for Third Party Products..31
Custom Controls for Data Entry ..31
Grids ..31
Menu and Toolbar Controls ...31
Other Controls That Submit The Page...31
Other Third Party Products ..31

ADDING VALIDATION TO A WEBFORM.. 32

Big Picture ..32

Step-by-Step ...32

VALIDATOR CONTROLS .. 37

About Conditions ...38

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 3 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 3

Finding the Condition by Validator ...39
Properties Common to most Conditions ..39

RequiredTextValidator ...42
Using This Condition...42
Condition Properties for RequiredTextValidator...43

RequiredListValidator ..44
Using This Condition...44
Condition Properties for RequiredListValidator..45

DataTypeCheckValidator ...46
Using This Condition...46
Condition Properties for DataTypeCheckValidator...47

Range Properties on the DataTypeCheckCondition Class...47
ControlToNative() method...48

CompareToValueValidator ..50
Using This Condition...50
Condition Properties for CompareToValueCondition ...51

CompareTwoFieldsValidator ...53
Using This Condition...53
Condition Properties for CompareTwoFieldsCondition ..54

RangeValidator ..55
Using This Condition...55
Condition Properties for RangeValidator ..56

RegexValidator ..58
Learning About Regular Expressions ..58
Using This Condition...59
Condition Properties for RegexValidator ..60

CheckStateValidator ...63
Using This Condition...63
Condition Properties for CheckStateValidator...64

SelectedIndexValidator ...65
Using This Condition...65
Condition Properties for SelectedIndexValidator ..66

TextLengthValidator...67
Using This Condition...68
Condition Properties for TextLengthValidator ..69

EmailAddressValidator...70
Using This Condition...71

Omitting Certain Domains...71
Condition Properties for EmailAddressValidator ..72
Using aspNetMX ...74
Changing the Default Email Address Pattern ..75

MultipleRequiredControlsValidator..76
Using This Condition...77

Adding Textual Controls to ControlsToEvaluate ..77
Adding List Controls to ControlsToEvaluate ..78
Adding CheckBox/RadioButton Controls to ControlsToEvaluate ..79

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 4 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 4

Determining the number of controls that are required ...80
Condition Properties for MultipleRequiredControlsValidator...81

RequiredSelectionValidator..83
Using This Condition...84
Supporting Other Controls...85

Setting up Client Side Validation ..85
Setting up Server Side Validation..85

Condition Properties for RequiredSelectionValidator ...88

CharacterValidator ...89
Using This Condition...89
Condition Properties for CharacterValidator ...90

CompareToStringsValidator ..93
Using This Condition...94
Condition Properties for CompareToStringsValidator ..95

WordCountValidator ..98
Using This Condition...98
Condition Properties for WordCountValidator..99

DifferenceValidator ...100
Using This Condition...101
Condition Properties for DifferenceValidator..102

CountSelectionsValidator ...103
Using This Condition...103
Condition Properties for CountSelectionsValidator...104

DuplicateEntryValidator...105
Using This Condition...106
Condition Properties for DuplicateEntryValidator ..107

UnwantedWordsValidator..110
Using This Condition...111
Condition Properties for UnwantedWordsValidator..112

SelectedIndexRangesValidator...115
Using This Condition...115
Condition Properties for SelectedIndexRangesValidator ..116

ListSizeValidator ...118
Using This Condition...118
Condition Properties for ListSizeValidator..119

CreditCardNumberValidator...120
Using This Condition...121
Condition Properties for CreditCardNumberValidator ..122
Editing Credit Card Brands..123

ABARoutingNumberValidator...125
Using This Condition...125
Condition Properties for ABARoutingNumberValidator ..126

CountTrueConditionsValidator ...127
Using This Condition...128
Condition Properties for CountTrueConditionsValidator ..129

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 5 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 5

MultiConditionValidator ..131
Using This Condition...132
Condition Properties for MultiConditionValidator..133

CustomValidator..135
Using This Condition...137

Steps to Defining Your CustomValidator ..137
Server-Side Condition..139

Properties of PeterBlum.DES.ConditionTwoFieldEventArgs ...140
Server-Side Condition Example ..141
Changing The Error Message On The Server Side..143

Client-Side Condition ..144
The Client-Side Evaluation Function...144
Accessing Data On the Client-Side Condition object ..145
Client-Side Condition Example ...146
Changing The Error Message On The Client Side...147

Condition Properties for CustomValidator ..148

IgnoreConditionValidator...150
Using This Validator..151
Condition Properties for IgnoreConditionValidator ..153

Non-Data Entry Conditions ..155
Non-Data Entry Condition Classes..156
Using Non-Data Entry Conditions...157
Properties for VisibleCondition ...158
Properties for EnabledCondition..159
Properties for ClassNameCondition ..160
Properties for ReadOnlyCondition ..161
Properties for CompareToValueAttributeCondition..162

Extending Existing Validators and Conditions ...164
Extending the Server Side..165
Extending The Client-Side...167

Defining the Error Message and Associated Labels ...168
Properties for Error Messages and Associated Labels ...168
Properties of the PeterBlum.DES.LabelText Class..171
Tokens in Error Messages..172
Applying Styles To Tokens ...176

ErrorFormatters: Customizing the Appearance of the Error Message..178
Using ErrorFormatters ...179

Setting the Appearance ..180
Editing the ErrorFormatter in Design Mode ..181
ASP.NET Declarative Syntax for the ErrorFormatter Property...182
Creating an ErrorFormatter Programmatically ..183

ErrorFormatter Skins ...184
Using ErrorFormatter Skins...184
Defining a Skin in Design Mode ...186
Defining a Skin in a Text Editor ..187
Defining a Skin Programmatically...188

Properties Common To All ErrorFormatter Classes..189
Text..191

Using The TextErrorFormatter ..191
Properties for TextErrorFormatter (“Text”)...191

Hyperlink with Alert..193
Using This ErrorFormatter...193

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 6 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 6

Properties for HyperLinkErrorFormatter (“HyperLink with Alert”) ...193
Image with Tooltip ..195

Using This ErrorFormatter...195
Properties for TooltipImageErrorFormatter (“Image with ToolTip”)..195

Image with Alert ..196
Using This ErrorFormatter...196
Properties for AlertImageErrorFormatter (“Image with Alert”) ..196

PopupView ..198
Using This ErrorFormatter...198
Properties for PopupErrorFormatter (“PopupView”) ..198

Working With PopupViews...202
PopupView Features ..202
Using the Global Settings Editor to define PopupViews ...203
View an existing definition..204
Edit a definition ...206
Add a definition ...206
Rename a definition ...206
Delete a definition..206
Creating your own Callouts ...206
Adding your own Callouts to the PopupView Definition ..207

Properties for the PeterBlum.DES.ErrorFormatterPopupView Class...208
Overall Appearance Properties ..209
Header Properties...210
Body Properties ...213
Footer Properties..215
Callout Properties ..217
Positioning Properties ..219
Other Properties ...220

Other Validator Properties that Customize the Appearance...223
PeterBlum.DES.NoErrorFormatter Class ..225

Drawing The User’s Attention To The Error..227
Set Focus to the Control...228

Page-Level Properties ..228
Show an Alert ..229

Page-Level Properties ..229
Change the Style of the Field With the Error...231

Alternative Styles...231
Using This Feature...232
Page-Level Properties ..233

Change the Style of Other Fields Nearby the Error ...237
Using This Feature...237
Page-Level Properties ..239

Blinking the ErrorFormatter ..241
Page-Level Properties ..241
Properties on the Validator ..242

Confirm when Warnings are shown ..243
Page-Level Properties ..243

Changing When the Validator is Evaluated ..245
Validation Groups..246

Using Validation Groups ...246
Special Characters In Group Names ..246

The Enabler Property ...247
Other Properties That Disable Validation..250

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 7 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 7

Other Properties ..252

Submitting the Page: Server-Side Validation..253
Setting Up Server-Side Validation...254

DES Submit Control PostBack Event Handlers when CausesValidation=true..254
PostBack Event Handlers when CausesValidation=false ..255
Validating With All Other PostBack Event Handlers..256

Preventing Validation Or Evaluating Individual Validators ..257
Properties and Methods to Evaluate a Validator Control...258
DES’s Button, LinkButton, and ImageButton Controls...259

Using DES’s Button, LinkButton, and ImageButton Controls ..260
Properties on DES’s Button, LinkButton, and ImageButton Controls...262

DES’s Submit Controls For The GridView and DetailsView..264
Using DES’s CommandField Control..264
Using DES’s ButtonField Control ...265

DES’s Submit Controls For The DataGrid ..266
Using the EditCommandColumn Control..266
Using the ButtonColumn Control ..267

Using Native Button Controls to Submit the Page ..268
The RegisterSubmitControl method ..269
The PeterBlum.DES.SubmitBehavior Class ..270
The RegisterChildSubmitControls method..272
The PeterBlum.DES.ChildSubmitBehavior Class ...274

Using the Menu Control to Validate the Page ...277
The PrepareMicrosoftMenuControl() method ...278

Using the BulletedList Control ..279
Steps to set up the BulletedList Control...279
The RegisterBulletedListControl() method ...280

Using AJAX Callback Controls...281
Update panels...281
Buttons...281
Other controls ..281
The RegisterCallbackControl() method ...281

Using Validation with AutoPostBack..283
How to Add DES Validation to AutoPostBack ...283
AutoPostBack with Peter’s Date Package TextBoxes ...285
Overcoming a bug in Google Chrome 1 ..285

Submitting the Page: Client-Side Validation...286
Page-Level Properties used by Client-Side Validation..287

ADDITIONAL VALIDATION TOPICS... 290

Validation Best Practices...291

Using the DES Validation Framework With Each ASP.NET Web Control...292
AdRotator ..293
BulletedList ...293
Button ..293
Calendar...293
ChangePassword..293

Example ...294
CheckBox ..296
CheckBoxList ..296
CompareValidator..296
CreateUserWizard..297

Example ...297
CustomValidator..301

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 8 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 8

DataGrid ..301
DataList ...301
DetailsView ...301
DropDownList ...302

Overcoming a bug in Google Chrome 1 ..302
FileUpload ...302

Checking the FilePath..302
Server Side Validation ...302
Example ...303

FormView..305
GridView ...305
HiddenField ...306
HyperLink..306
Image ...306
ImageButton ..306
ImageMap..306
Label ..306
LinkButton...306
ListBox ..306
Literal...307
Localize ...307
Login..307

Example ...308
LoginName ..309
LoginStatus..309
LoginView ...309
Menu..309
MultiView..309
Panel ..309
PasswordRecovery...309

Example ...310
PlaceHolder ...311
RadioButton...311
RadioButtonList...311
RangeValidator ..311
RegularExpressionValidator ..311
RequiredFieldValidator ...311
Repeater ...311
SiteMapPath...312
Substitution..312
Table ..312
TextBox ...312
TreeView ...312
ValidationSummary...313
WebZone and WebParts ..313
Wizard ...313
XML ..314

Using Validators with Third Party Controls ...315

Analyzing the Page’s Validation configuration...316
Querystring parameter ...316
Add a control to the page...316

Supporting a Reset or Clear Button...317

The ViewState and Preserving Properties for PostBack ..318

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 9 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 9

Validation and the PostBackUrl Property...319

Running Validation With Client-Side Scripts ...320
Evaluating all Validators for a Validation Group ..320

Changing The Properties of a Validator With Client-Side Scripts ...321

Adding Client-Side Validation Scripts Within Your Server Side Code..323
PeterBlum.DES.Globals.Page.GetPostBackEventReference method..323
PeterBlum.DES.Globals.Page.GetPostBackClientHyperlink method ...325
PeterBlum.DES.Globals.Page.GetValidationGroupScript Method ...326

VALIDATIONSUMMARY CONTROL ... 327

Features ..328

Using ValidationSummary Control..329
When the Control Is Shown and Hidden ...329
Setting the Appearance and Behavior..330

Overall Appearance ...330
Header..331
Error Messages ..332
Footer...334

The Related Control Feature..335
Adding ErrorMessages At Runtime...336
Using the ValidationSummary as a Label for “There are errors” ..338

Show when the user attempts to submit the page ..338
Show as edits are made..338

Adding a ValidationSummary Control..339

Properties of the ValidationSummary Control ...341
When to Update Properties ..342
Error Message Formatting Properties ..344
Overall Appearance Properties ..347
Header Properties...348
Footer Properties..350
Behavior Properties ...351
Related Control Properties...352

HTML Structure of the ValidationSummary Control ...353

COMBINEDERRORMESSAGES CONTROL... 354

Using the CombinedErrorMessages Control ..355

Adding the CombinedErrorMessages Control..356

Properties for the CombinedErrorMessages Control ..358
Setting the Validators Properties ...359
Appearance Properties ...360
Behavior Properties ...361

REQUIRED FIELD MARKER CONTROLS .. 362

RequiredFieldMarker Control ...363

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 10 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 10

RequiredFieldsDescription Control ...364

Setting up the Global Defaults ..365

Adding a RequiredFieldMarker Control...367

Properties of the RequiredFieldMarker Control ..368

Adding a RequiredFieldsDescription Control...369

Properties of the RequiredFieldsDescription Control ..370

PAGE LEVEL PROPERTIES AND METHODS.. 371

Properties on PeterBlum.DES.Globals.Page ...372

Debugging PeterBlum.DES.Globals.Page Properties ...377

Methods on PeterBlum.DES.Globals.Page ..378
PeterBlum.DES.Globals.Page.EnableValidators() method..378
PeterBlum.DES.Globals.Page.EnableClientScriptValidators() method ..378

JAVASCRIPT SUPPORT FUNCTIONS ... 379

General Utilities ...379

Retrieving Values From Data Entry Controls...382

Validation Functions ...384

ADDING YOUR JAVASCRIPT TO THE PAGE.. 387

Embedding the ClientID into your Script..387

Debugging Your JavaScript..388

TROUBLESHOOTING .. 389

Runtime Problems ...389
Enabler, ErrorFormatter, or HiliteFields properties are ignored ..392

Design Mode Problems..394

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 11 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

License Information
This document includes information for all aspects of validation found in Peter’s Data Entry Suite. If you licensed the
complete Suite, you have all features found in this User’s Guide. If you licensed the Peter’s Professional Validation module,
some features are not available to you unless you also licensed the Peter’s More Validators module.

Platform Support
This product was written for Microsoft ASP.NET. It supports all versions from 1.0 up. It includes assemblies specific to
ASP.NET 1.x and ASP.NET 2. It is compatible with all browsers, scaling down automatically when the browser has a
limitation. In some cases, that means the control turns off its client-side functionality or turns itself off entirely.

This product is designed to scale properly even when the Page’s ClientTarget property causes the HttpBrowserCapabilities
(Request.Browser) to falsely state the browser. In other words, you can’t fool these controls with an upLevel clientTarget.
This is absolutely necessary because feeding the wrong browser will generate incorrect client side scripts giving the user’s
scripting errors. It was also considered a requirement to hide features that didn’t work on the browser to give the user the best
interface. For more, see “Browser Support” in the General Features Guide.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 12 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Technical Support and Other Assistance
PeterBlum.com offers free technical support. This is just one of the ways to solve problems. This section provides all of your
options and explains how technical support is set up.

Troubleshooting Section of this Guide
This guide includes an extensive set of problems and their solutions. See “Troubleshooting”. This information will often save
you time.

Developer’s Kit
The Developer’s Kit is a free download that provides documentation and sample code for building your own classes with this
framework. It includes:

 Developer’s Guide - Overviews of each class with examples, step-by-step guides, and other tools to develop new classes.

 MSDN-style help file - Browse through this help file to learn about all classes and their members.

 Sample code in C# and VB.

You can download it from http://www.peterblum.com/DES/DevelopersKit.aspx.

PeterBlum.Com MessageBoard
Use the message board at http://groups.yahoo.com/groups/peterblum to discuss issues and ideas with other users.

Getting Product Updates
As minor versions are released (4.0.1 to 4.0.2 is a minor version release), you can get them for free. Go to
http://www.PeterBlum.com/DES/Home.aspx. It will identify the current version at the top of the page. You can read about all
changes in the release by clicking “Release History”. Click “Get This Update” to get the update. You will need the serial
number and email address used to register for the license.

As upgrades are offered (v4.0 to v4.1), PeterBlum.com will determine if there is an upgrade fee at the time. You will be
notified of upgrades and how to retrieve them through email.

PeterBlum.com often adds new functionality into minor version releases.

Technical Support
You can contact Technical Support at this email address: Support@PeterBlum.com. I (Peter Blum) make every effort to
respond quickly with useful information and in a pleasant manner. As the only person at PeterBlum.com, it is easy to imagine
that customer support questions will take up all of my time and prevent me from delivering to you updates and cool new
features. As a result, I request the following of you:

 Please review the Troubleshooting section first. See “Troubleshooting”.

 Please try to include as much information about your web form or the problem as possible. I need to fully understand
what you are seeing and how you have set things up.

 If you have written code that interacts with my controls or classes, please be sure you have run it through a debugger to
determine that it is working in your code or the exact point of failure and error it reports.

 If you are subclassing from my controls, I provide the DES Developer's Kit that includes the Developers Guide.pdf,
Classes And Types help file, and sample files. I can only offer limited assistance as you subclass because this kind of
support can be very time consuming. I am interested in any feedback about my documentation’s shortcomings so I can
continue to improve it.

 I cannot offer general ASP.NET, HTML, style sheet, JavaScript, DHTML, DOM, or Regular Expression mentoring. If
your problem is due to your lack of knowledge in any of these technologies, I will give you some initial help and then
ask you to find assistance from the many tools available to the .Net community. They include:

http://www.peterblum.com/DES/DevelopersKit.aspx�
http://groups.yahoo.com/groups/peterblum�
http://www.peterblum.com/DES/Home.aspx�
mailto:Support@PeterBlum.com�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 13 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

o Books

o www.asp.net forums and tutorials

o Microsoft’s usenet newsgroups such as microsoft.public.dotnet.framework.aspnet. See
http://groups.google.com/groups?hl=en&lr=&ie=UTF-8&group=microsoft.public.dotnet

o Google searches. (I virtually live in Google as I try to figure things out with ASP.NET.)
http://www.Google.com. Don’t forget to search the “Groups” section of Google!

o http://aspnet.4guysfromrolla.com/, http://www.dotnetjunkies.com, http://www.aspalliance.com/

o For DHTML, Microsoft provides an excellent guide at http://msdn2.microsoft.com/en-
us/library/ms533050.aspx.

o For DOM, start with the DHTML guide. Topics that are also in DOM are noted under the heading “Standards
Information”

o For JavaScript, I recommend http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference.

As customers identify issues and shortcomings with the software and its documentation, I will consider updating these areas.

http://www.asp.net/�
http://groups.google.com/groups?hl=en&lr=&ie=UTF-8&group=microsoft.public.dotnet�
http://www.google.com/�
http://aspnet.4guysfromrolla.com/�
http://www.dotnetjunkies.com/�
http://www.aspalliance.com/�
http://msdn2.microsoft.com/en-us/library/ms533050.aspx�
http://msdn2.microsoft.com/en-us/library/ms533050.aspx�
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 14 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

What does Peter’s Data Entry Suite Do?
Peter’s Data Entry Suite (“DES”) is a suite of ASP.NET controls designed around the concepts of data entry: validation,
entry fields, and interactive behaviors in response to a user’s action. The suite includes several modules that can be purchased
stand-alone. This User’s Guide covers the aspects of validation.

Peter’s Data Entry Suite was designed to improve upon the form validation concept build into the .Net framework. It
completely replaces Microsoft’s original Validator controls, as they imposed serious limitations on how a Validator can look
and act. As part of the work, extensive client-side JavaScript code was written. This JavaScript code lends itself well to other
client-side tasks, such as formatting the entry of a CurrencyTextBox and setting focus to a field. Since validation is always
part of data entry, Peter’s Data Entry Suite addresses numerous other requirements of a good user interface for data entry.

Here are the major aspects of Peter’s Data Entry Suite:

 Validation – The same idea as the concept introduced by Microsoft, with Validator controls to detect and report errors on
the page. DES provides extensive enhancements over Microsoft’s controls that allow your sites to have a more
professional appearance with Validators and make it much easier to evaluate the data in your web form. Its rich feature
set lets you set a few properties instead of writing custom code and hacks to work around the limitations of Microsoft’s
Validators. It includes 28 Validators and several other controls.

o There are 11 Validators in Peter’s Professional Validation, designed to handle common cases, like required
fields, comparisons and textlength limits.

o There are 14 Validators in Peter’s More Validators, designed to handle more specialized situations like credit
card numbers and duplicate entries amongst several fields.

o There are two Validators designed for you to plug in your own validation logic, the CustomValidator and
IgnoreConditionValidator

o The MultiConditionValidator lets you combine the validation logic of other Validators into one boolean
expression, often avoiding the use of writing code in CustomValidators.

o The ValidationSummary control displays a consolidated list of all errors reported as the page is submitted.

o The RequiredFieldMarker and RequiredFieldDescription controls standardize the user interface for indicating a
field is required.

o The CombinedErrorMessages control merges the error messages from several Validators to save screen real
estate. It requires a license covering “Peter’s More Validators”.

o The LocalizableLabel control is an enhanced Label that supports localization. Localization is an important
aspect to DES. Labels are optionally shown in the error messages.

o A variety of button controls and ways to submit the page so that validation is run automatically.

This User’s Guide addresses these features.

 TextBoxes – DES provides a number of controls as replacements to Microsoft’s TextBox control.

o Its own TextBox control, the basis for all other textboxes, introduces numerous common client-side tricks for
TextBoxes.

o The IntegerTextBox, DecimalTextBox, CurrencyTextBox, and PercentTextBox handle data entry of these
numeric formats.

o The FilteredTextBox limits entry to the character set of your choice.

o The MultiSegmentDataEntry control combines multiple textboxes and dropdownlists together to handle a single
field that has a distinctive pattern, such as phone numbers and credit card numbers. It is a great substitute for a
masked textbox with a more powerful user interface.

See the TextBoxes User’s Guide.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 15 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 Date And Time – Controls for entry of date and time information.

o DateTextBox – Date entry with a popup calendar

o AnniversaryTextBox – Date entry without the year.

o MonthYearTextBox – Month and year entry

o TimeOfDayTextBox – Time of day entry

o DurationTextBox – Time duration entry

o Calendar – A very powerful replacement to the native ASP.NET calendar

o MonthYearPicker – Month and year entry using the mouse

o TimePicker – Time entry using the mouse

o Popup versions of Calendar, MonthYearPicker, and TimePicker

o Validators for these controls. There are versions for the DES Validation Framework and Native ASP.NET
Validation Framework if you choose not to use the DES Validation Framework.

See the Date And Time User’s Guide.

 Interactive Pages – There are numerous ways to make your web forms more interactive and user friendly through
JavaScript. These techniques will make your web forms feel more like a window in a Windows application.

o The FieldStateController monitors clicks and changes on a field and modifies other controls. It can modify
almost any attribute of a field: visibility, enabled, style sheet class, value and more. For example, use it when
you want a textbox to be disabled until the user marks a checkbox. There are four versions of the
FieldStateController: FieldStateController, MultiFieldStateController, FSCOnCommand, and
MultiFSCOnCommand.

o The CalculationController lets you describe a calculation that uses the textboxes on the page. It can display the
result of the calculation in a label or another textbox. Validators can validate the result of the calculation. For
example, a RangeValidator can make sure the total of 3 textboxes is within 0 to 100.

o Add a ContextMenu to your web forms, supplying javascript commands to regions and controls within the page.

o The TextCounter monitors the number of keystrokes in a textbox, displaying the count and warning the user as
they near and reach the limits.

o The Interactive Hints system shows a hint as the user moves into a field. The hint can appear in a popup
(floating element) or on the page in a Label or Panel. It can also appear in the browser’s status bar.

o Replace the browser’s ToolTip with DES’s Enhanced ToolTips.

o The ChangeMonitor watches for edits in the page. Until a change is made, selected buttons are disabled. After,
they are enabled.

o Enhanced Buttons with several javascript tricks including showing a confirmation message, disabling until data
is changed (see the ChangeMonitor), and disabling on submit.

o Direct the Enter key to click a specific button. Enhances DES’s TextBoxes with the EnterSubmitsControlID
property.

See the Interactive Pages User’s Guide.

 Input Security – Hackers attack your web site through its inputs – data entry controls, query strings, hidden fields, and
cookies – to access your database (called SQL Injection) and modify your pages with scripts (called Script Injection or
Cross-site scripting). These attacks can be very damaging to a business, destroying data, exposing private customer
information, or exposing customers to content that you would never want on your site. Every public web site should be
designed with a defense system. With Peter’s Input Security, you have that defense system.

Validators play an important role in blocking these attacks. However, they have their limitations. Peter’s Input Security
introduces specialized Validators to detect and block attacks. It also provides a “best practices” framework for protecting
your site against attacks.

See the Input Security User’s Guide.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 16 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 General Features – The features throughout this product are supported by these controls and tools:

o PageManager control – Each page has numerous settings. Use this control to apply those settings in without
programming.

o Global Settings Editor – A stand-alone Windows application to customize numerous global settings used by
DES.

o NativeControlExtender control – Extends various native controls to support DES Validation, Interactive Hints,
the ChangeMonitor, and more.

o String Lookup System – A mechanism to set most string-type properties from data stored in resources or a
database.

o LocalizableLabel control – The Label control enhanced to support the String Lookup System.

Throughout this product, one of the most important design concepts is to allow expansion through the object-oriented
concepts of subclassing and delegation. This allows you to build your web site the way you want it. The controls are built
upon several discrete object classes. Even the client-side JavaScript is designed for expansion. See the Developer’s Kit to
learn how to program with Peter’s Data Entry Suite.

http://www.peterblum.com/des/developerskit.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 17 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Overview of the DES Validation Framework
The .Net framework already contains a framework of tools to perform validation on your web forms (“Native Validation
Framework”). As you use the framework, you will quickly find its limitations that cause you to write unnecessary code,
invent hacks and often enough have no solution. Generally you waste time trying to add functionality that should already be
there. A detailed list of these limitations is at http://www.peterblum.com/des/validationimprovements.aspx.

Peter’s Data Entry Suite provides its own framework (“DES Validation Framework”): 27 Validators, a ValidationSummary
and other controls to fully cover the concept of validation. If you have already learned Microsoft’s model, you will find this
framework to be very similar except that you won’t be writing much custom code and learning JavaScript to get the job done.
Plus you will have useful new options to make your user interface easier for your site users.

If you are unfamiliar with the Native Validation Framework, here is the concept used by both Native and DES.

 A Validator control looks at one or more data entry controls on the page. As those controls are changed, the Validator
control evaluates the values of the fields against a rule, called a “condition”. If the data doesn’t match the condition, the
Validator shows a message describing the error. If it matches the condition, the error message is hidden. The error
message is defined as a property of the Validator control and positioned where you place the control on the page.

 The ValidationSummary control shows a list of all errors on the page in one place and appears when the user submits a
page.

 The buttons on the page cause the Validators to show or hide themselves unless you turn the feature off. The page will
not submit while there are errors.

 Validation happens on the client-side to avoid unnecessary post backs. However, every time a page is posted back, the
server side will also validate because users are running browsers with JavaScript unavailable or the Validators
themselves have JavaScript unavailable.

The next topics provide an overview of the features of Peter’s Data Entry Suite’s Validation framework.

Click on any of these topics to jump to them:

 Client-Side Validation Support

 Supported Data Entry Controls

 Evaluating Conditions

 Determining When Validators Fire

 Error Messages

 Showing Errors

 ValidationSummary Control

 Showing the “Required Field” Marker

 Submitting The Page

 The String Lookup System

 Support for the Native Validation Framework

 Support for Third Party Products

http://www.peterblum.com/des/validationimprovements.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 18 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Client-Side Validation Support
These Validators support client-side validation on most modern browsers. The code is DOM and DHTML compliant. It
supports Internet Explorer 4.0+ for Windows, FireFox on Windows and Mac, Safari on Windows and Mac, Opera 7+ on
Windows and Mac, Internet Explorer 5.0+ for Mac, Netscape 6+, and all Mozilla-based browsers.

Other browsers scale down automatically to provide server side validation. With its “TrueBrowser” technology, you can
enable client-side support for browsers not tested by PeterBlum.com.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 19 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Supported Data Entry Controls
 DES’s Validators support controls with the ValidationPropertyAttribute. This is the same attribute used by Microsoft’s

Validation controls and allows your new custom controls to be supported automatically. In addition, specialized DES
Validators can use any control they desire, not just those with the ValidationPropertyAttribute. For example, the
CheckStateValidator uses the CheckBox control, which does not support the ValidationPropertyAttribute.

 Validators and their conditions can easily support third party controls that are textboxes, radiobuttons, checkboxes,
listboxes and dropdownlists that do not use the ValidationPropertyAttribute. See the section “Supporting Third Party
Data Entry Controls” in the Installation Guide.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebuivalidationpropertyattributeclasstopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebuivalidationpropertyattributeclasstopic.asp�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 20 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Evaluating Conditions
A “Condition” is a rule that evaluates the fields of the page and determines if an error is found or not. Validator controls
differ by their conditions. (They share the same formatting and enabling properties.) Here are the Validators with a
description of their conditions:

 RequiredTextValidator – Tests if a field’s textual value is “blank” or not. You can define what text represents “blank”. It
is similar to Microsoft’s RequiredFieldValidator.

 RequiredListValidator – Tests if a ListBox, DropDownList, RadioButtonList, or CheckBoxList is “blank”. You can
define what selected item represents “blank”.

 MultipleRequiredControlsValidator – Tests several fields to determine how many have been filled in (not “blank”). It
supports these rules: All, All or none, Only one, At least one, and a range.

 RequiredSelectionValidator – Tests if a control is has a selection. It is for non-textual and non-list controls that display
data, usually in a HTML table. Examples are ListView, Calendar, and MonthYearPicker. All of these are supported
automatically.

 DataTypeCheckValidator – Tests a field’s textual value to confirm it represents a particular data type. It is similar to the
native CompareValidator when the Operator property is DataTypeCheck.

 CompareToValueValidator – Tests a field’s textual value against another value that you supply. You determine the data
type of the values and the operator to compare the two. It is similar to the native CompareValidator when the
ValueToCompare property is used.

 CompareTwoFieldsValidator – Tests the values of two fields to each other. You select the operator that is used in the
comparison. It is similar to the native CompareValidator when the ControlToCompare property is used.

 RangeValidator – Tests a field’s textual value is between a minimum and maximum value. You determine the data type
of the values. It is similar to Microsoft’s RangeValidator.

 RegexValidator – Tests a field’s textual value against a regular expression. Use it to confirm the text fits a pattern such
as a phone number, email address, or postal code. It is similar to Microsoft’s RegularExpressionValidator. Design mode
includes more predefined expressions than Microsoft’s control and the predefined list is customizable.

 CheckStateValidator – Evaluates the mark within a checkbox or radio button.

 SelectedIndexValidator – Evaluates the selected index of a ListBox, DropDownList, RadioButtonList, or CheckBoxList.

 TextLengthValidator – Evaluates the number of characters in a textbox against a minimum and/or maximum.

 EmailAddressValidator – Used on Email address fields. Confirms that the pattern is valid on both client and server side.
In addition, it’s designed to be hooked up to Advanced Intellect’s aspNetMX product for advanced validation that goes
out to the email server to confirm that the email address exists. You can purchase aspNetMX separately at
http://www.aspNetMX.com/.

 CharacterValidator – Tests a field’s textual value to confirm that each character is in a character set that you specify. For
example, you require a password to be letters, digits, and underscores only. This Validator doesn’t care about the order
or pattern of characters.

 CompareToStringsValidator – Tests a field’s textual value against a list of strings. If the text matches one of the strings,
it is valid. It allows you to use a datasource (DataSet, DataTable, ArrayList) to populate the list of strings.

 WordCountValidator – Evaluates the number of words in a textbox against a minimum and/or maximum.

 DifferenceValidator – Evaluates two textbox fields to determine if the difference between their two values is a certain
number apart from each other. You select the data type (including dates), a value to compare and the operator. For
example, test that two dates are less than 60 days apart.

 CountSelectionsValidator – Evaluates CheckBoxLists and multi-selection ListBoxes to determine how many items are
selected. You can establish a minimum and maximum.

 CountTrueConditionsValidator – Lets you define a list of conditions for a number of fields. Evaluates how many of
those conditions are true and compares them to a minimum and maximum. A common usage is with a list of checkboxes
(not using a CheckBoxList) to emulate the CountSelectionsValidator.

http://www.aspnetmx.com/�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 21 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 DuplicateEntryValidator – Determines if three or more textboxes, dropdownlists, or lists have a matching value. It
reports an error when a duplicate is found.

 SelectedIndexRangesValidator – Like the SelectedIndexValidator, it evaluates the SelectedIndex on a List,
DropDownList, and RadioButtonList. This Validator compares the SelectedIndex to multiple values, including ranges.
For example, it’s valid if the SelectedIndex is between 1 and 4.

 ListSizeValidator – Evaluates the number of items shown in a listbox or dropdownlist. Typically used when the user
interface allows adding and removing items in a list, where you have a minimum or maximum for the number of items
shown.

 UnwantedWordsValidator – Compares a list of words to the text. It reports an error when any of the words is found
within the text.

 CreditCardNumberValidator – Confirms that the pattern is valid for credit card numbers. Its evaluation rules confirm that
the text is all digits, follows Luhn’s formula, and if desired matches specific brands of credit cards. It does not provide
credit card number approval.

 ABARoutingNumberValidator – Confirms that the pattern is valid for ABA routing numbers such as check routing
numbers. It confirms that the text is always 9 digits that are confirmed with a checksum rule defined by the American
Bankers Association.

 Use the CustomValidator to build your own condition. It is like Microsoft’s CustomValidator, where you associate an
event handler to handle server side validation and the name of a JavaScript function that you supply for client-side
validation.

 IgnoreConditionValidator – This Validator has no condition of its own. It is used to hold an error message that you
manually show by setting its IsValid property false in some program code. While the CustomValidator forces you to
move some of your validation logic into its own event handler, this Validator lets you keep all of your logic in one
common area.

 The MultiConditionValidator lets you build complex Boolean expressions using the conditions of other Validators. This
single Validator often replaces the need for custom Validators. It also allows you to have one error message representing
several other Validators. For example, one message appears when either the RequiredTextValidator or
DataTypeCheckValidator report an error.

http://www.aba.com/�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 22 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Determining When Validators Fire
Frequently you must limit when a Validator fires. DES provides these rules:

 Validation Groups – Associates a button with a group of validators it fires by a unique “group name”. This allows
several submit buttons on the page to validate their own data entry controls. For example, a login area has its own
Submit button. Assign each Validator and the Submit button to the group “Login” and it will only validate the login
name and password fields, leaving the other Validators on the page untouched.

DES has subclassed each Microsoft ASP.NET control that can submit the page (Button, ImageButton, LinkButton, etc.)
to support this new capability. See “DES’s Button, LinkButton, and ImageButton Controls”.

 The Enabler Property – The Enabler property on each Validators allows it to enable and disable itself based on any
Condition you want. For example, suppose you have a TextBox that is only used when a checkbox is marked. So set the
Enabler Condition to the CheckStateCondition (from the CheckStateValidator).

The Enabler uses conditions from Validators, which evaluate data entry values. DES also provides the following Non-
Data Entry Conditions, which evaluate other states of controls:

o VisibleCondition – Determines if a field is visible.

o EnabledCondition – Determines if a field is enabled.

o ClassNameCondition – Determines if a field has a style sheet class name that matches your setting.

o ReadOnlyCondition – Determines if a field is read-only.

o CompareToValueCondition – Compares the value of any attribute or style to a value you specify.

See “Non-Data Entry Conditions” for details.

 Events That Evaluate - By default, the Validator evaluates its condition when the user changes a field and when they
submit. You can turn off either of these actions.

When the Validator does not fire on submission, you can use the Validator as a warning message since it will not stop
the user from submitting the page. For example, “Values above 100 may generate a page that is too large for your
printer.” or “Dates after March 30 cannot be guaranteed. Call us.”

When the Validator does not fire when the field changes, you can let errors show only when the user submits. They can
still show next to the field or only in the ValidationSummary control.

 Server Side Only – Sometimes you need the Validator to evaluate only on post back, not on the client-side. Set the
EnableClientScript property to turn it off. For example, when matching to a passcode, you might use the
CompareToValueValidator. However, it creates JavaScript that contains the passcode to match. That’s something the
user can easily find by viewing the page’s source. When the Validator is server side only, no JavaScript is generated.

See “Changing When the Validator is Evaluated” for details.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 23 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Error Messages
Error Messages are the text that is shown to the user when a condition indicates the wrong data was found. There are two
error messages on each Validator: one shown at the location of the Validator; the other shown in the ValidationSummary. See
“Defining the Error Message”.

 Tokens – DES supports tokens within the error messages. Tokens really become powerful tools when your site must
have consistent messages. Your programmers must use the exact strings you define for each case. They simply setup the
properties appropriate for the condition and the label and let tokens embedded in the error messages customize the text.
The following are types of tokens:

o Values determined at runtime. For example, the TextLengthValidator offers the token “{COUNT}”. When
found, it is replaced by the actual number of characters you typed. The WordCountValidator,
CountTrueConditionsValidator, and CountSelectionsValidator all can show the count. The DifferenceValidator
can show by how much the two fields are apart. The UnwantedWordsValidator can show the unwanted word
found. Most Validators offer the “{TEXTVALUE}” token to show the current value of the field within the error
message.

o Values determined at design time in the control’s properties. For example, all Validators with a Minimum and
Maxmium property offer the tokens “{MINIMUM}” and “{MAXIMUM}”.

o Often sentences that show a numeric value have to have two forms, one for singular and one for plural usage of
the number. (“There is 1 word.” or “There are 2 words.”). DES offers tokens that allow you to define both the
singular and plural forms. For example, those with “{COUNT}” also support “{COUNT:singular:plural}”.
Define the message like this: “There {COUNT:is:are} {COUNT} {COUNT:word:words}.”

o You can define a label that names the field using the Validator’s Label property. Then use the “{LABEL}”
token to show it in the error message. Labels can be actual controls or text that you define within the Label
property. DES provides case changing rules to convert control fields to a more readable format for the error
message such as “lowercase”, “uppercase”, “sentence style”, and “title style”.

o When the error message is shown on the page (using the TextErrorFormatter), you can define style sheets that
format many of the tokens. For example, show the label with a different font.

You can define global styles for tokens so that the label, runtime and property values stand out on the page.

See “Tokens in Error Messages” for details.

 Standardized Error Messages - You can define standard error messages in .resx files, a database, or other data sources.
When the programmer selects an error message, they use a “Lookup ID” to the error message and never need to fill in
the actual error message. Once done this way, you can change the error messages in one place and update the entire site.

 Localized Error Messages - Error messages can be localized. Use the .resx files, a database, or other data source with
the “Lookup ID” to define your messages in multiple cultures.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 24 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Showing Errors
A Validator’s task is to show an error message to the user when the condition indicates that the wrong data was found.
Whenever you add text to the web page, you have your own ideas of its formatting. For example, you apply a style sheet that
changes the text color to red or you add the image to the left of the message.

With the Native Validation Framework, you have to embed HTML tags into the error message to perform some of the
formatting. DES gives you properties that introduce the formatting gracefully without affecting the text of the error message.
It also offers many new ways to attract the user’s attention to the error.

 ErrorFormatters – There are far more ways to show an error than with a simple label. DES supplies four “Error
Formatters” and is designed to allow you to create your own. See “ErrorFormatters: Customizing the Appearance of the
Error Message”.

The following ErrorFormatters are included in DES:

o Text – Like Microsoft’s Label where you see the text with the styles of your choosing. You can supply an
image that appears before the text and properties to put any HTML you like before and after the error message.
See “Text”.

o Image with tooltip – Only show an image. Images can use much less space on the page and will always use the
same amount of space when used on multiple Validators. When the user points to the image, a tooltip exposes
the error message. See “Image with Tooltip”.

o Image with Alert – Only show an image. When the user clicks on the image, an alert shows the error message.
The image has an optional tool tip to tell the user to “click for more details”. See “Image with Alert”.

o HyperLink with Alert – Similar to “Image with Alert”. The user clicks on a textual hyperlink to pop up an
alert. The text might say “Error: Explain”. Again it uses less space on the page. See “Image with Alert”.

o PopupView – Only show an image. When the user clicks on the image, show a PopupView, which is a floating
message. In addition, when focus moves into a control being evaluated, it automatically shows the PopupView.
See “PopupView”.

 Getting The User’s Attention – When there is an error as the field is changed or the page is submitted, there are several
additional ways to get the user’s attention. They are determined by page-level properties that you can set globally in the
Global Settings Editor, on the PeterBlum.DES.Globals.Page property in Page_Load(), or on the PageManager
control.

o Put the focus on the field with the error. Use the page level properties FocusOnChange and FocusOnSubmit.

o Change the style of the field with the error. For example, change the background to red. Use the page level
property ChangeStyleOnControlsWithError.

o Put up an alert box with the error message. Use the page level properties ShowAlertOnChange and
ShowAlertOnSubmit.

o Change the style of the label or an enclosing field. For example, change the font color of the label and change
the background color and border of an enclosing to <div>. Use the page level property
HiliteFieldsNearbyError and the Validator property HiliteFields.

o The ErrorFormatter can blink to get the user's attention. This is especially effective when the user hits Submit
and you want to draw their eye to the field with the error. Use the page level properties BlinkOnChange and
BlinkOnSubmit.

See “Drawing The User’s Attention To The Error” for details.

 NoErrorFormatter property - When no error is shown, you can still have the Validator display text, HTML or an
image. It can be shown at different times, such as any time there is no error, or only after the user corrects a validation
error.

 CombinedErrorMessages Control –The CombinedErrorMessages control lets you combine error messages from
several Validators under one ErrorFormatter. It has several uses:

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 25 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

o When you are using an error formatter with an image, like , and the field may show several of these at the
same time, you will normally see multiple images. That looks strange. The CombinedErrorMessages control
will show just one image and display all of the relevant error messages.

o When you want to show all error messages in one place, add the CombinedErrorMessages control where you
want to show the error. The idea is similar to a ValidationSummary control except it appears as fields are
changed and its formatting matches other Validators.

See “CombinedErrorMessages Control”.

 Style Sheet Driven - A style sheet file is supplied to provide default formatting. All controls default to using named
styles so you can universally change their styles.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 26 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

ValidationSummary Control
DES provides a ValidationSummary control. Like the one supplied with the .Net framework, it appears when the user
submits and errors were found. It shows the error messages found throughout the page in one place. It has much more
features than the native ValidationSummary.

 You can define a header and footer text string and control the horizontal alignment. (Microsoft’s only has a left-justified
header.)

 The header supports an optional image and includes formatting rules where to position the image against the text.

 The error messages can be shown with the following styles using the DisplayMode property:

o List – Each message is on its own line. You can define text that precedes each message such as a dash (“-”).

o BulletedList – A list of messages that uses the HTML tags: or . You determine what symbol
precedes each message: circle, disc, square, alphabetic, numeric, and roman.

o SingleParagraph – Each message is consolidated into one paragraph. You can define the text that separates each
message such as a semicolon or space.

o Table – A list style that permits changing the styles of alternating rows or assigning borders on each table row.

 Each error message can optionally support a hyperlink. When clicked, the focus is moved to the first field associated
with the error message.

 There are separate style classes for the overall validation summary and the error messages. It’s all placed into a <div>
control to allow you to develop nice borders and backgrounds.

 Since the ValidationSummary may appear on a very tall web form, users may not always see it. The ValidationSummary
can be connected to another field on the form that is shown and hidden simultaneously with the ValidationSummary.
For example, define a Label with the text “There are errors on the page” on the opposite side of the form. Or use this
feature to add other elements around the ValidationSummary that are not built into the control, such as an enclosing
table.

 If you have different validation groups, you may want multiple ValidationSummary controls. A ValidationSummary can
show any specific group or all groups at once.

 Use the AutoUpdate property to interactively change the ValidationSummary as the user corrects the fields. Once the
ValidationSummary is shown, each field change validation will also redraw the ValidationSummary. This way, users can
see their progress in correcting the errors.

 Use the ScrollIntoView property to scroll the ValidationSummary control into view when the user submits and an error
is displayed in the control.

 The ValidationSummary supports localization.

See “ValidationSummary Control”.

http://msdn2.microsoft.com/en-US/library/f9h59855(VS.80).aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 27 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Showing the “Required Field” Marker
The “required field marker” is a standard identifier that indicates the associated control is required. Typical forms place a
symbol, like “*” or a small graphic, next to each field that requires an entry. They also place a description of the required
field marker on the page.

DES makes setting up the required field marker easy:

 RequiredFieldsDescription Control – Use the RequiredFieldsDescription control to place the description of the marker
on the page. While it’s easy to define a text label, this control retrieves the text from global values. This assures you that
the description is standardized throughout your site. It supports localization. See “RequiredFieldMarker Control”.

 RequiredFieldMarker Control – Use the RequiredFieldMarker control to place the actual marker next to the field. This
standardizes the visual image, so that you define it once. The global definition can be textual or an image. It supports
localization. See “RequiredFieldMarker Control”.

 ShowRequiredFieldMarker Property – Each Validator includes the ShowRequiredFieldMarker property. When set
to true, it automatically inserts a RequiredFieldMarker control to its left.

 Default Image Supplied – DES supplies this default marker image: . You can define your own. Change one global
property and all RequiredFieldsDescriptions and RequiredFieldMarkers will use yours.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 28 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Submitting The Page
The action of submitting the page is a critical part to validation. On the client-side it reviews all fields, including those that
did not get edited, to report errors and block page submission. On the server-side, it does the same but provides additional
defenses because JavaScript can be turned off, the browser may not support the client-side scripts, and hackers will try to
attack your site by working around the client-side validation.

The buttons, hyperlinks, menus and other controls that submit the page run validation. They can evaluate validators based on
a Validation Group name or all groups (group name= “*”). When they do this on the client-side, DES prevents submitting the
page until all errors are addressed. On the server-side, DES’s buttons can validate for you or you can call
PeterBlum.DES.Globals.Page.Validate() to validate. You should always test the
PeterBlum.DES.Globals.Page.IsValid property is true inside your postback event handler method before saving data. See
“Submitting the Page: Server-Side Validation”.

ALERT: New users often overlook server side validation, leaving their site vulnerable to bad data and hacking. Always set up
server side validation on every submit control that needs validation.

DES must enhance the existing page submission controls to do handle client-side validation:

 Buttons - DES provides replacements for the Button, LinkButton, and ImageButton controls. These direct subclasses of
Microsoft’s controls introduce capabilities like a property for validation groups and the ability to automatically validate
on both client and server sides. See “DES’s Button, LinkButton, and ImageButton Controls”.

You can use the Microsoft buttons too, if you connect them to DES using the NativeControlExtender control. See “Using
Native Button Controls to Submit the Page”.

 Buttons in Grids - DES provides replacements for the ButtonColumn and EditCommandColumn controls in the
DataGrid and CommandField and ButtonField in the GridView. These direct subclasses of Microsoft’s controls
introduce capabilities like a property for validation groups and the ability to automatically validate on both client and
server sides. See “DES’s Submit Controls For The DataGrid” and “DES’s Submit Controls For The GridView and
DetailsView”.

 Menu control – The native ASP.NET Menu control can run client-side validation on selected menu items with the
NativeControlExtender control.

 Third party menus and toolbar controls – See the Using Third Party Controls guide.

 AutoPostBack – When you use the AutoPostBack feature on a data entry control, it makes sense to validate it first to
avoid an unnecessary post back. DES’s TextBoxes do this automatically. If you use any other control, use the
NativeControlExtender control. See “Using Validation with AutoPostBack”.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 29 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

The String Lookup System
DES provides properties for all text shown to the user. ErrorMessages, Labels, ValidationSummary header and footer text
and more are under your control. For most of these properties, you can use DES’s String Lookup System to retrieve the
strings from a resource file, database or other means. Use the String Lookup System to localize text based on culture or to
build a library of standardized error messages and other text shown throughout your site.

When you see a string property, look for another property with the same name, plus the text “Lookup ID”. That property
identifies which string to retrieve from the String Lookup System. See the “String Lookup System” section of the General
Features Guide.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 30 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Support for the Native Validation Framework
Peter’s Data Entry Suite is designed to replace all aspects of the Native Validation Framework. While you can keep some
of the native Validators on a page, it often makes sense to fully convert to DES. Use the Web Application Updater program
to convert an entire application or a selected list of pages. See the Installation Guide.

Here are the guidelines if you want to keep some of Microsoft’s Validators.

 If you are starting a new page, simply use DES’s controls.

 If you have an existing page that doesn’t need any of DES’s capabilities, you can leave it alone. DES doesn’t affect
pages that lack its controls.

 You can mix the Validators of both frameworks on the same page with these warnings:

o The ValidationSummary controls of both frameworks will only show error messages of their own framework.

o All features introduced by DES are only available to DES controls. This includes the validation group
capability.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 31 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Support for Third Party Products
DES supports numerous third party products and technologies. There are several areas of third party support: custom
Validators and classes written for DES; custom controls for data entry; menus and toolbars; other controls that submit the
page; and other third party products.

Custom Controls for Data Entry
If you build or acquire a TextBox, CheckBox, ListBox, DropDownList, or RadioButton control, DES Validators usually can
support it. If the control is subclassed from Microsoft’s control of the same type, it will work automatically.

For Telerik RadEditor, Telerik RadCombobox, EasyListBox, Infragistics WebDataInput controls, and Infragistics
WebCombo, see to [DES ProductFolder]\Third Party Controls folder for documentation and supporting files.

For other controls, see the topic “Supporting Third Party Data Entry Controls” in the Installation Guide.

Grids
DES works well in most Grid controls that provide an editable row mode where you are able to add any webcontrols to the
row. Microsoft’s GridView is one example.

Telerik RadGrid and Infragistics UltraWebGrid require some additional setup. See to [DES ProductFolder]\Third Party
Controls folder for documentation.

Menu and Toolbar Controls
Most Menu and Toolbar controls allow their commands to submit the page. You can make these controls run the client-side
validation that normally occurs when the user submits the page. DES has already been tested with the following products and
includes step-by-step documentation for using them: Telerik RadMenu, Infragistics UltraWebMenu, Infragistics
UltraWebToolbar, WebActive ASPMenu.net, Coalesys ASP.NET Menu, CYBERAKT ASP.NET Menu, Ursa WebMenu and
skmMenu.

See to [DES ProductFolder]\Third Party Controls folder for documentation.

Other Controls That Submit The Page
Some custom controls embed Microsoft’s buttons and other submit controls. In some cases, you can hook them up to client-
side validation that normally occurs when the user submits the page. See “Using Native Button Controls to Submit the Page”.

Other Third Party Products
Telerik RadTabStrip requires some additional setup to allow client-side validation. See to [ProductFolder]\Third Party
Controls folder for documentation and supporting files.

Advanced Intellect LLC’s aspnetMX provides validation of email addresses by checking the MX tables associated with the
specified address, providing the most accurate email address checking available. DES’s EmailAddressValidator allows
aspnetMX users to get this functionality within a Validator. See “Using aspNetMX”.

http://www.telerik.com/�
http://www.telerik.com/�
http://easylistbox.com/�
http://www.infragistics.com/�
http://www.infragistics.com/�
http://www.telerik.com/�
http://www.infragistics.com/�
http://www.telerik.com/�
http://www.telerik.com/�
http://www.aspnetmx.com/�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 32 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Adding Validation to a WebForm
Here is the general approach to add validation to your web form. Many users miss steps 1, 2, 11, 12, and 16 which are
important.

Big Picture
The step-by-step instructions below provide extensive details, giving you a wide variety of options. Here is the big picture of
what you should do:

 Make sure the style sheet files are loading. (This is generally automatic in ASP.NET 2+.)

 Add Validator controls, setting their condition rules, formatting, and error messages. See “Finding the Condition by
Validator”.

 Use DES’s Button controls to submit the page. For any button that should not validate, set its CausesValidation
property to false. See “Submitting the Page: Server-Side Validation”.

 In the post back event handler where you save data, first confirm PeterBlum.DES.Globals.Page.IsValid is true.

 If desired, add the ValidationSummary Control and Required Field Marker Controls.

 If desired, add other ways to draw the user’s attention to the error. See “Drawing The User’s Attention To The Error”.

 When using AJAX, be sure DES is properly configured. See “Using these controls with AJAX” in the General
Features Guide.

Step-by-Step
These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View
command to return to the link. Look for this in the Adobe Reader (shown v6.0)

1. Prepare the page for DES controls. See “Preparing a page for DES controls” in the General Features Guide. It covers
issues like style sheets, AJAX, and localization.

2. If your web form already has controls from the Native Validation Framework or native buttons, you can quickly convert
it to use DES equivalent controls with the Web Application Updater program. Use the Convert native controls to
their DES equivalents option.

3. Determine the type of Validator that you need. See “Evaluating Conditions”.

4. Select the location on the page where the Validator will appear. It can be moved later if needed. If you have limited
space, the Validator has formatting options to greatly reduce its size. So position it at your first choice of location.

5. Add a Validator control to the page.

Visual Studio and Visual Web Developers Design Mode Users

Drag the Validator control from the Toolbox onto your web form.

Text Entry Users

Add the control (inside the <form> area):

<des:[ValidatorClass] id="[YourControlID]" runat="server" />

For example, to add the RequiredTextValidator, use:

<des:RequiredTextValidator id="[YourControlID]" runat="server" />

Programmatically creating the Validator control

 Identify the control which you will add the Validator control to its Controls collection. Like all ASP.NET controls,
the Validator can be added to any control that supports child controls, like Panel, User Control, or TableCell. If you
want to add it directly to the Page, first add a PlaceHolder at the desired location and use the PlaceHolder.

 Create an instance of the control class. The constructor takes no parameters.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 33 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 Assign the ID property.

 Add the Validator control to the Controls collection.

In this example, the RequiredTextValidator is created with an ID of “TextBox1RequiredValidator”. It is added to
PlaceHolder1.

[C#]

PeterBlum.DES.RequiredTextValidator vValidator =
 new PeterBlum.DES.RequiredTextValidator();
vValidator.ID = "TextBox1RequiredValidator";
PlaceHolder1.Controls.Add(vValidator);

Note: The namespace for these controls is PeterBlum.DES. If you prefer, add a using clause to that namespace on your
form.

 [VB]

Dim vValidator As PeterBlum.DES.RequiredTextValidator = _
 New PeterBlum.DES.RequiredTextValidator()
vValidator.ID = "TextBox1RequiredValidator"
PlaceHolder1.Controls.Add(vValidator)

Note: The namespace for these controls is PeterBlum.DES. If you prefer, add an Imports clause to that namespace on
your form.

Guidelines for setting properties

 Design mode users can use the Properties Editor or the Expanded Properties Editor. (See “Expanded Properties
Editor” in the General Features Guide.) The SmartTag also offers some of the most important properties.

 Text entry users should add the properties into the <des:ControlClass> tag in this format:
propertyname="value"

 When setting a property programmatically, have a reference to the control’s object and set the property according to
your language’s rules.

6. Set the properties associated with the Condition (evaluation rule) for the Validator.

Click on the Validator in this chart to see its Condition properties:

ABARoutingNumberValidator CharacterValidator CheckStateValidator

CompareToStringsValidator CompareToValueValidator CompareTwoFieldsValidator

CountSelectionsValidator CountTrueConditionsValidator CreditCardNumberValidator

CustomValidator DataTypeCheckValidator DifferenceValidator

DuplicateEntryValidator EmailAddressValidator IgnoreConditionValidator

ListSizeValidator MultipleRequiredControlsValidator MultiConditionValidator

RangeValidator RegexValidator

RequiredListValidator RequiredSelectionValidator RequiredTextValidator

SelectedIndexValidator SelectedIndexRangesValidator TextLengthValidator

UnwantedWordsValidator WordCountValidator

7. Set the error message using the ErrorMessage property. If you are using the ValidationSummary control and a different
error message is needed, also use the SummaryErrorMessage property. There are options for tokens, localization and
standardized message libraries. See “Defining the Error Message”.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 34 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

8. Set the appearance of the Validator in the location of the Validation control using the ErrorFormatter property. See
“ErrorFormatters: Customizing the Appearance of the Error Message”.

 Select an overall format from one of styles provided: Text, Hyperlink with Alert, Image with Tooltip, Image with
Alert, and PopupView. If you have space limits, avoid the Text ErrorFormatter.

Note: Within the Properties Editor, you can customize the default properties for the ErrorFormatters. You can even
create new names for types with various configurations. That way, you can just select the ErrorFormatter type from
the list to set it up quickly.

 If you do not want to show the Validator except in the ValidationSummary, set the ErrorFormatter.Display
property to None.

 If there are several Validators whose messages you’d like to combine under one ErrorFormatter, also add a
CombinedErrorMessages Control.

 If you want to indicate that an error has been fixed, use the NoErrorFormatter property.

9. Set cases where your Validator should not be evaluated.

 When you have two or more submit controls that are associated with their own Validators, use validation groups by
setting the Group property to the name of the group. See “Validation Groups”.

 When the Validator should not validate unless there is a specific setting on the page, use the Enabler property to
specify the rule that enables it. See “The Enabler Property”.

 The Enabled property can fully disable the Validator. The EventsThatValidate property can determine what client-
side events cause validation. See “Other Properties That Disable Validation”.

10. You have finished the setup of the Validator control. Return to step 3 to add another. Otherwise, continue to establish
other behaviors on the page with the remaining steps.

11. Make your submit controls run DES validation on the client and server side.

 For buttons, use DES’s Button, LinkButton, and ImageButton controls. See “DES’s Button, LinkButton, and
ImageButton Controls”.

 For the DataGrid, use DES’s EditCommandColumn and ButtonColumn controls. See “DES’s Submit Controls For
The DataGrid”.

 For the GridView and DetailView control, use DES’s ButtonField and CommandField controls. See “DES’s Submit
Controls For The GridView and DetailsView”.

 If you don’t want to use DES’s submit controls, you need to hookup code to your existing buttons to force client-
side validation. See “Using Native Button Controls to Submit the Page” and “Using the Menu Control to Validate
the Page”. On the server side, your Click post back event handler should call
PeterBlum.DES.Globals.Page.Validate().

 If a submit control should not validate, set its CausesValidation property to false. For example, a Cancel or Back
button.

 If you are using the Group property on Validators, assign the group name to the Group property on the submit
control.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 35 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

12. Your post back event handler method should check that PeterBlum.DES.Globals.Page.IsValid is true before saving
or otherwise using the data. If you are not using DES’s submit controls, this should appear after the call to
Validate().

[C#]

protected void Button1_Click(object sender, EventArgs e)
{
 // if Button1 is not a DES button,
 // call PeterBlum.DES.Globals.Page.Validate("validation group name") here
 if (PeterBlum.DES.Globals.Page.IsValid)
 {
 // code that saves or uses the data of the web form
 }
}

[VB]

Protected Sub Button1_Click(ByVal sender As Object, ByVal e As EventArgs) _
 Handles Button1.Click

 ' if Button1 is not a DES button
 ' call PeterBlum.DES.Globals.Page.Validate("validation group name") here
 If PeterBlum.DES.Globals.Page.IsValid Then
 ' code that saves or uses the data of the web form
 End If
End Sub

13. Set up properties that draw the user’s attention to the error. DES provides several techniques including setting focus to
the field with the error, showing an alert, changing a style of the field with the error or its label, and blinking the
errorformatter. See “Drawing The User’s Attention To The Error”.

14. If desired, add a ValidationSummary control. It provides a consolidated list of all errors on the page. See
“ValidationSummary Control”.

15. If desired, add required field markers to fields that require an entry.

 Use the RequiredFieldDescriptor control as a descriptive heading.

 Either use the Validator’s ShowRequiredFieldMarker property or add the RequiredFieldMarker control next to the
data entry control.

See “Required Field Marker Controls”.

16. If your license covers Peter’s Interactive Pages module, see the Interactive Pages User’s Guide for adding any of
these features:

 Prompt to confirm saving the page on submit. There is a default confirmation message on
PeterBlum.DES.Globals.Page.ConfirmMessage. DES’s submit controls can provide individualized messages with
their own ConfirmMessage property.

 Set focus to a specific field using the PeterBlum.DES.Globals.Page.InitialFocusControl property.

 Disable the submit buttons to limit double submissions using the DisableOnSubmit property on DES’s submit
controls.

 Run custom JavaScript code when the page is submitted with the
PeterBlum.DES.Globals.Page.CustomSubmitFunctionName property.

17. Here are some other considerations:

 If you are using an AJAX system to update this control, set the InAJAXUpdate property to true. Also make sure
the PageManager control or AJAXManager object has been setup for AJAX. See “Using these Controls With
AJAX” in the General Features Guide. Failure to follow these directions can result in incorrect behavior and
javascript errors.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 36 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 This control does not preserve most of its properties in the ViewState, to limit its impact on the page. If you need to
use the ViewState to retain the value of a property, see “The ViewState and Preserving Properties for PostBack” in
the General Features Guide.

 If you encounter errors, see the “Troubleshooting” section for extensive topics based on several years of tech
support’s experience with customers. In addition, you can display a report that gives the page’s validation
configuration. See “Analyzing the Page’s Validation configuration”.

 See also “Additional Validation Topics”.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 37 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Validator Controls
Validation is a framework of controls and classes that notify users when fields contain invalid data on the page. The
Validator control class defines the rules to detect an error – called a condition, the error message, and its formatting. DES
includes 25 Validator controls, each with its own condition; plus two more where you define the rules to detect an error. You
can also create your own Validator controls and conditions with the Developer’s Kit.

Error notification occurs at two points:

 When a field is changed. This happens on the client side, using JavaScript, so that the user doesn’t have to submit the
form to see the error. When the field is textual, a listbox or dropdownlist, validation is performed as the focus leaves the
field. When the field is a checkbox or radiobutton, validation is performed as soon as the user changes the mark in the
button.

Client-side validation is offered on browsers that support DOM or DHTML well, including Internet Explorer 4+ for
Windows, FireFox for Windows and Mac, Safari for Windows and Mac, Opera 7+ for Windows and Mac, Internet
Explorer 5 for Macintosh, Netscape 6+ for Windows and Mac, and browsers created from Mozilla. Other browsers
require the server to detect and display errors. In addition, you can elect to turn off client-side validation on individual
Validator controls if their validation logic requires functionality only found on the server side, such as a database lookup.

DES will automatically detect if JavaScript is disabled on a browser that supports JavaScript. When it does, all further
page requests will have the server-side only user interface. This makes for a much cleaner experience. JavaScript is
detected to be disabled after the first post back on any page using DES controls.

 When the page is submitted. This action asks all Validator controls to validate the fields on the page. When one or more
report an error, the page is redisplayed with errors and the server side should not attempt to use the data from the page.
Submission also has a client-side validation process that can update the page without posting back to the server. If the
client-side validation is disabled (because you disabled it or the browser doesn’t support it), the page will be posted to
the server and server-side validation code will run.

You can separate Validators into groups where a particular submit control will only validate those controls within the
group. For example, suppose your page includes a login area and a survey form, each with its own Validators and submit
buttons. You assign the group names “login” and “survey” to the respective controls (including the buttons). When the
user submits, validation is limited to the group of the button.

There are several ways to notify the user of an error on the page:

 A message or image appears near the field. You assign an error message to each Validator control that it will display
when an error is detected. The error message is shown where the control is placed on the page.

Each Validator Control includes an ErrorFormatter, an object that determines how the error message appears. DES
includes five formatters: “Text”, “Image with Tooltip”, “Image with Alert”, “HyperLink with Alert”, and “PopupView”.
Each of these Error Formatters has numerous properties let you control the appearance, including style sheet support and
a URL to an image file. ErrorFormatters can optionally blink to attract the user’s attention.

 Use the ValidationSummary control to list all errors on the page. The ValidationSummary control looks through all
Validators to see which have an error condition and shows the error message assigned to the control. See
“ValidationSummary Control”.

 Several visual cues to draw the user’s attention to the error. Some occur as the field is changed. Others when the page is
submitted. Most are not properties of the Validator control but use your Validator controls to determine the data entry
fields with the errors and the error messages shown. See “Drawing The User’s Attention To The Error”.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 38 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Click on any of these topics to jump to them:

 About Conditions

 Finding the Condition by Validator

 Properties Common to most Conditions

 Non-Data Entry Conditions

 Defining the Error Message

 ErrorFormatters: Customizing the Appearance of the Error Message

 Other Validator Properties that Customize the Appearance

 Drawing The User’s Attention To The Error

 Changing When the Validator is Evaluated

 Other Properties

 Submitting the Page: Server-Side Validation

 Submitting the Page: Client-Side Validation

 Additional Validation Topics

About Conditions
Validator controls use Conditions to determine whether the fields are valid or not. A Condition is a very powerful tool. In
fact, the Condition concept has been placed into a separate class of objects, subclassed from
PeterBlum.DES.BaseCondition, so it can be used in a variety of ways. Each Validator control internally contains a
Condition object and exposes its properties. The Enabler property on all Validator controls lets you use a Condition object to
determine if the Validator control should validate at all. For example, your Validator on a textbox shouldn’t run if the textbox
is invisible.

Each Condition defines a rule that is evaluated when the Validator is notified to evaluate. There are 30 Condition classes
defined in DES. Some are Non-Data Entry Conditions that evaluate attributes of a field on the page such as visibility or the
enabled state. The Non-Data Entry Conditions do not have a Validator control equivalent. They are used within the Enabler
property and several Validator controls. You can add your own Conditions through delegation (attaching an event handler) or
by subclassing.

One of the most powerful Conditions within DES is the MultiCondition class and its associated MultiConditionValidator
Control. Use it to build Boolean expressions from the results of any number of Conditions. For example, (condition1 AND
condition2 OR (condition3 AND condition4)). It is often used, as the rules of your pages can get complex.

When a Condition is evaluated, it may return one of three values: “success”, “failed”, or “cannot evaluate”. “Cannot
evaluate” indicates that the fields do not contain the right kind of data that can be evaluated. For example, when you have set
up a Validator to compare the contents of a TextBox to an integer, the TextBox must contain an integer before the
comparison can occur. If the user entered something else, the Condition would return “cannot evaluate”. In this case, you
would set up another Validator to confirm the data is an integer. The Validator control notifies the user when the condition
failed. It hides the error when the condition succeeded. When the Condition returns “cannot evaluate”, any existing error is
hidden.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 39 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Finding the Condition by Validator

Click on the Validator in this chart to see its Condition properties:

ABARoutingNumberValidator CharacterValidator CheckStateValidator

CompareToStringsValidator CompareToValueValidator CompareTwoFieldsValidator

CountSelectionsValidator CountTrueConditionsValidator CreditCardNumberValidator

CustomValidator DataTypeCheckValidator DifferenceValidator

DuplicateEntryValidator EmailAddressValidator IgnoreConditionValidator

ListSizeValidator MultipleRequiredControlsValidator MultiConditionValidator

RangeValidator RegexValidator

RequiredListValidator RequiredSelectionValidator RequiredTextValidator

SelectedIndexValidator SelectedIndexRangesValidator TextLengthValidator

UnwantedWordsValidator WordCountValidator

Properties Common to most Conditions
Each Validator control includes a Condition with several properties that require setup. The Properties Editor shows them in
the “Condition” section.

The following list are properties common to most Conditions. Individual Validator controls describe additional properties in
the following sections.

 ControlIDToEvaluate (string) – Identifies the data entry control that will be evaluated. This property takes the ID of the
control. When a Validator control or Condition class includes this property, it must be assigned unless you are using the
ControlToEvaluate property or the CustomValidator.

If the Condition supports multiple controls, this refers to the first control.

An exception is thrown at runtime when this is blank, unknown, not in the same or ancestor naming container, is
Visible=false, or a control class that is not supported.

Each condition class specifies the types of controls it supports. See the descriptions of each condition at “Evaluating
Conditions”.

Note: DES supports third party controls that are based on or emulate TextBox, CheckBox, RadioButton, ListBox,
and DropDownList. See the topic “Supporting Third Party Data Entry Controls” in the Installation Guide

 ControlToEvaluate (System.Web.UI.Control) – An alternative to ControlIDToEvaluate. Use it when the data entry
control is not in the same or ancestor naming container. It must be assigned programmatically. For example, if you have
a Validator instance in the variable “Val1” and a textbox instance in the variable “TextBox1”, write code like this:
Val1.ControlToEvaluate = TextBox1.

When programmatically assigning properties to a Validator control or Condition class, if you have access to the control
object that will be evaluated, it is better to assign it here than assign its ID to the ControlIDToEvaluate property
because DES operates faster using ControlToEvaluate.

 NotCondition (Boolean) – When true, it reverses the result of the Condition’s evaluation. If the evaluation was
success, it will be failed. If failed, it will be success. This is especially useful when building Boolean
expressions within the MultiConditionValidator. It defaults to false.

 Trim (Boolean) – When true, Conditions will trim the leading and trailing spaces from the strings they retrieve from
data entry controls prior to evaluating them. Set to false when your server side retrieval code for the field doesn't trim,
thus would be tripped up by the leading and trailing spaces. It defaults to true.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 40 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 ReportErrorsAfter (enum PeterBlum.DES.ReportErrorsAfter) – Any validator that can evaluate two or more controls
can use this property to delay the onchange validation until the user moves out of those controls. It allows them to edit all
controls first before seeing an error.

The enumerated type PeterBlum.DES.ReportErrorsAfter has these values:

o EachEdit – Validate after an individual control is edited. This is the normal way validation works.

o AllEdits – Validate after focus leaves all controls assigned to the validator, if any were changed.

o AllEditsWhenError – When there is a validation error, wait until focus leaves all controls assigned to the
validator. If the error is fixed, remove the error message immediately after any of the fields are edited.

o AllEditsFirstTime – The first time editing any of the controls will wait until focus leaves all fields
assigned to the validator. After the validator has been evaluated once, validate after each of the fields are edited.

Its default depends on the validator.

 ExtraControlsToRunThisAction (PeterBlum.DES.ControlConnectionCollection) – Identifies additional controls and
elements on the page that validate this Validator when clicked or edited.

The Condition already identifies controls through its ControlIDToEvaluate and SecondControlIDToEvaluate
properties so this is rarely needed. The most common usages are:

o Conditions that reference RadioButtons such as the CheckStateCondition. The browser only runs a
RadioButton’s onclick event when the button is clicked. It doesn’t run when clicking another RadioButton
unmarks the RadioButton specified in ControlIDToEvaluate. Assign the other RadioButtons to this property.

o If your CustomValidator uses controls that are not specified by ControlIDToEvaluate and
SecondControlIDToEvaluate, add those controls to this property.

o The IgnoreConditionValidator does not offer the ControlIDToEvaluate and SecondControlIDToEvaluate
properties. If you are using the OverrideClientSideEvaluation property to provide a client-side experience,
you can add controls involved in your condition here.

This property is a collection of PeterBlum.DES.ControlConnection objects. You can assign the control’s ID to
the ControlConnection.ControlID property or a reference to the control in the ControlConnection.ControlInstance
property. When using the ControlID property, the control must be in the same or an ancestor naming container. If it is in
another naming container, use ControlInstance.

Be sure that the control assigned to this collection has the runat=server property.

ASP.NET Declarative Syntax for Adding ControlConnections

ExtraControlsToRunThisAction is a type of collection. Therefore its ASP.NET text is nested as a series of child
controls within the <ExtraControlsToRunThisAction> tag. Here is an example.

<des:ValidatorClass id="Validator1" runat="server">

 <ExtraControlsToRunThisAction>
 <des:ControlConnection ControlID="TextBox1" />
 <des:ControlConnection ControlID="Label1" />
 </ExtraControlsToRunThisAction>

</des:ValidatorClass>

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 41 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Programmatically Adding ControlConnections

The ExtraControlsToRunThisAction property will create PeterBlum.DES.ControlConnections for you by
calling its Add() method. ExtraControlsToRunThisAction.Add() takes a reference to the control object or
its ID. (The reference is recommended for performance.)

[C#]

Validator1.ExtraControlsToRunThisAction.Add(RadioButton1); // reference
Validator1.ExtraControlsToRunThisAction.Add("RadioButton2"); // ID

[VB]

Validator1.ExtraControlsToRunThisAction.Add(RadioButton1) ' reference
Validator1.ExtraControlsToRunThisAction.Add("RadioButton2") ' ID

Example

This example shows how to update an existing PeterBlum.DES.ControlConnection and add a new entry.
Suppose the ASP.NET code looks like the text above and the Label1 control is not in the same or ancestor naming
container. Also suppose the control referenced in the property TextBox2 control must be added.

[C#]

uses PeterBlum.DES;
...
ControlConnection vConnection = (ControlConnection)
 Validator1.ExtraControlsToRunThisAction[1];
vConnection.ControlInstance = Label1;
// add TextBox2. It can be either a control reference or its ID
Validator1.ExtraControlsToRunThisAction.Add(TextBox2);

[VB]

Imports PeterBlum.DES
...
Dim vConnection As ControlConnection = _
 CType(Validator1.ExtraControlsToRunThisAction(1), ControlConnection)
vConnection.ControlInstance = Label1
' add TextBox2. It can be either a control reference or its ID
Validator1.ExtraControlsToRunThisAction.Add(TextBox2)

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 42 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

RequiredTextValidator
Condition Class RequiredTextCondition

License Required Peter’s Professional Validation

Supported controls All that declare the ValidationPropertyAttribute including TextBox, ListBox, DropDownList

Can evaluate blank fields Yes

The RequiredTextValidator tests if a field’s textual value is “blank” or not. You can define what text represents “blank” such
as the empty string (the default) or “Enter Text Here”.

Click on any of these topics to jump to them:

 Adding Validation to a WebForm

 Using This Condition

 Condition Properties for RequiredTextValidator

 Properties for Error Messages

 ErrorFormatters: Customizing the Appearance of the Error Message

 Other Validator Properties that Customize the Appearance

 Changing When the Validator is Evaluated

 Other Properties

 Additional Validation Topics

Using This Condition
For an overview of Conditions, see “About Conditions”.

Specify the control to evaluate with the ControlIDToEvaluate property.

When used on a TextBox, it evaluates the Text property. When used on a ListBox and DropDownList, it evaluates to the
Value property on selected ListItem.

The UnassignedValues property determines what text is considered unassigned. It defaults to an empty string. It allows you
to define multiple strings considered unassigned, simply by separating each with a pipe (|). For example, to consider the
values of an empty string and “Item1” as unassigned, enter “|Item1”. If you want those to be the only valid values, set the
NotCondition property to true.

Most of the remaining Validator controls do nothing when the field’s textual value is the empty string, generally requiring
you to add this Validator. If you want a Validator that also uses this rule, use the MultiConditionValidator with the
RequiredTextCondition and the desired Validator’s condition. Use a logical AND operator on the MultiConditionValidator.

Example

Determine if TextBox1 is blank.

<des:RequiredTextValidator id="RequiredTextValidator1" runat="server"
 ControlIDToEvaluate="TextBox1" ErrorMessage="This field is required">
</des:RequiredTextValidator>

http://msdn2.microsoft.com/en-us/library/system.web.ui.validationpropertyattribute.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 43 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Condition Properties for RequiredTextValidator
Each Validator control includes a Condition with several properties that require setup. The Properties Editor shows them in
the “Condition” section.

The following list are properties specific to this Condition:

 ControlIDToEvaluate, ControlToEvaluate, Trim, and NotCondition – See “Properties Common to most
Conditions”.

 UnassignedValues (string) – The textual value of the control that means it is unassigned. When the control's value
matches this value, the condition indicates failure. Matching may be case sensitive or insensitive based on
UnassignedCaseInsensitive. It defaults to "".

Typically, a blank field (empty string) represents unassigned. Some sites prefer to have a term like “Please fill this in”
that when replaced is no longer unassigned. If you use DES’s TextBoxes with their ValueWhenBlank property set, this
validator automatically treats the ValueWhenBlank text as a blank field.

Since the RequiredTextCondition can get its value from the selected item in a ListBox or DropDownList, assign this to
text of the Value property on the ListItem that indicates the list is unassigned.

This property supports multiple items that reflect the unassigned state. Separate each item with a pipe character (|). For
example, a textbox is unassigned when either blank or “Enter a value” is present. Use “|Enter a value”. (The part prior to
the pipe is an empty string.) Lead and trailing spaces are removed on each item within the UnassignedValues.

 UnassignedCaseInsenstive (Boolean) - Determines if the UnassignedValues property is matched case insensitive or
not. When true, it is case insensitive. It defaults to true.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 44 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

RequiredListValidator
Condition Class RequiredListCondition

License Required Peter’s Professional Validation

Supported controls ListBox, DropDownList, RadioButtonList, CheckBoxList, and HtmlSelect

Can evaluate blank fields Yes

The RequiredListValidator tests if a list-style control has no selection. By default, “no selection” means no item is
highlighted or marked. You can change “no selection” to be a particular item, such as the first item in the list.

Click on any of these topics to jump to them:

 Adding Validation to a WebForm

 Using This Condition

 Condition Properties for RequiredListValidator

 Properties for Error Messages

 ErrorFormatters: Customizing the Appearance of the Error Message

 Other Validator Properties that Customize the Appearance

 Changing When the Validator is Evaluated

 Other Properties

 Additional Validation Topics

Using This Condition
Specify the control to evaluate with the ControlIDToEvaluate property. Use the UnassignedIndex property to change the
“no selection” item.

ALERT: Do not use this Validator with the ASP.NET AJAX Control Toolkit’s CascadingDropDown control. The
CascadingDropDown does not support the SelectedIndex property on the server side. It only supports the textual value.
Instead use the RequiredTextValidator on the List control. Set up its UnassignedValues property to be “|your prompt text”.
(That is a pipe character as the first letter.)

Example

Determine if ListBox1 has no selection.

<des:RequiredListValidator id="RequiredListValidator1" runat="server"
 ControlIDToEvaluate="ListBox1" ErrorMessage="Please make a selection">
</des:RequiredListValidator>

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 45 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Condition Properties for RequiredListValidator
Each Validator control includes a Condition with several properties that require setup. The Properties Editor shows them in
the “Condition” section.

The following list are properties specific to this Condition:

 ControlIDToEvaluate, ControlToEvaluate, and NotCondition – See “Properties Common to most Conditions”.

 UnassignedIndex (Integer) – The item number of the item that is considered unselected. When -1, there are no selected
items. 0 is the first item in the list. It defaults to -1.

Change it when an item, such as the first element of a RadioButtonList, ListBox, or DropDownList indicates an
unassigned state. The CheckBoxList control does not use this property because a CheckBoxList is unassigned when all
checkboxes are unmarked.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 46 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

DataTypeCheckValidator
Condition Class DataTypeCheckCondition

License Required Peter’s Professional Validation

Supported controls All that declare the ValidationPropertyAttribute including TextBox, ListBox, DropDownList

Can evaluate blank fields No (Use RequiredTextValidator)

The DataTypeCheckValidator tests a field’s textual value conforms to the format a particular data type. DES includes an
extensive and expandable list of data types.

Click on any of these topics to jump to them:

 Adding Validation to a WebForm

 Using This Condition

 Condition Properties for DataTypeCheckValidator

 Range Properties on the DataTypeCheckCondition Class

 ControlToNative() method

 Properties for Error Messages

 ErrorFormatters: Customizing the Appearance of the Error Message

 Other Validator Properties that Customize the Appearance

 Changing When the Validator is Evaluated

 Other Properties

 Additional Validation Topics

Using This Condition
Specify the control to evaluate with the ControlIDToEvaluate property. The DataType property specifies the data type. If
you assign this Validator to any of the Numeric TextBoxes, it will automatically adopt all of the data type rules from that
textbox. It will ignore the setting in the DataType property.

Data types like date and currency will follow culture specific formatting set on the current web page or overridden on
PeterBlum.DES.Globals.Page.CultureInfo.

If you are get a value from a textbox by retrieving a string from the Text property, let this validator assist you in converting
that string to its native type, such as Integer or DateTime, with the ControlToNative() method.

When used with any of DES’s numeric, date or time textboxes, it can respect their minimum and maximum values
(MinValue/MaxValue for numeric, MinDate/MaxDate for date, and MinTime/MaxTime for time) when the textbox
control’s DataTypeCheckReportsRangeErrors property is true.

Example

Determine if TextBox1 contains an integer.

<des:DataTypeCheckValidator id="DataTypeCheckValidator1" runat="server"
 ControlIDToEvaluate="TextBox1" DataType="Integer"
 ErrorMessage="The value must be an integer">
</des:DataTypeCheckValidator>

http://msdn2.microsoft.com/en-us/library/system.web.ui.validationpropertyattribute.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 47 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Condition Properties for DataTypeCheckValidator
Each Validator control includes a Condition with several properties that require setup. The Properties Editor shows them in
the “Condition” section.

The following list are properties specific to this Condition:

 ControlIDToEvaluate, ControlToEvaluate, Trim, and NotCondition – See “Properties Common to most
Conditions”.

 DataType (string) – The name of the data type that this condition is looking for. It defaults to “String”. You can change
it to any of these values: “String-Case Insensitive”, “Integer”, “Double”, “Date”, “Currency”, “Currency with Symbol”,
“Positive Integer”, “Positive Double”, “Positive Currency”, and “Positive Currency with Symbol”.

Numeric, currency, and date types will follow culture specific formatting set on the current web page or overridden on
PeterBlum.DES.Globals.Page.CultureInfo. Integers are represented by signed 32 bit integer values. Any larger integer
value than 2,147,483,648 will be considered invalid.

The “String” Data Type is really meaningless as every textual entry is a string. Suggestion: if you are looking for a way
to limit text to letters, digits, or any particular characters, use the CharacterValidator.

When using any of the numeric, date or time textboxes from the Peter’s TextBoxes or Peter’s Date and Time modules,
this property is almost always ignored. The textbox will tell the validator exactly how it needs to be configured.
DataType is only used when evaluating a TimeOfDayTextBox with the DateTextBoxControlID assigned. In that case,
set DataType to DateTime or Time to select whether to validate both DateTextBox+TimeOfDayTextBox together or
just the TimeOfDayTextBox alone.

You can programmatically define new data types. See the Developer’s Guide for details.

Range Properties on the DataTypeCheckCondition Class

The DataTypeCheckCondition (but not the validator) offers Minimum and Maximum properties. When set, they are the
range used by this condition to report an error.

Sometimes an out of range value is considered a data type check error. More often, it is better to evaluate it separately in a
RangeValidator to let the user know explicitly by an error message "The value is out of range."

Only use this when there is a range situation which the validator's current error message is helpful enough. For example,
since a percentage is usually a positive number, establish a minimum of 0 here. Reporting "-10" as an illegal value will make
sense to the user without saying "The value -10 is out of range.".

The DataTypeCheckValidator respects the range defined on a DES’s numeric, date, or time textboxes with their
DataTypeCheckReportsRangeErrors property is true.

 Minimum (string) – The minimum value of a range in a string formatted to match the selected DataType. For example,
if the DataType=Integer, this value can only contain digits. Alternatively, assign a native type, like Integer or
DateTime, to MinimumAsNative, and Minimum will be correctly formatted for you.

If it is "", there is no minimum.

It defaults to "".

 Maximum (string) – The maximum value of a range in a string formatted to match the selected DataType. For example,
if the DataType=Integer, this value can only contain digits. Alternatively, assign a native type, like Integer or
DateTime, to MaximumAsNative, and Maximum will be correctly formatted for you.

If it is "", there is no maximum.

It defaults to "".

 MinimumAsNative (object) - Alternative to the Minimum property. It takes a data type other than a string and converts
it to the string stored in the Minimum property. This property is not shown in the Properties Editor.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 48 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

When setting this property, use the type given for the DataType property values listed here:

DataType Supported types

Integer, Positive Integer 32 bit integer (System.Int32)
Double, Positive Double,
Currency (all types)

Double (System.Double)

Date, DateTime System.DateTime
Time, Duration System.DateTime, System.TimeSpan, Integer (number of seconds),

Double (number of hours)

If you set an illegal value, it will throw an exception.

When getting this property, if the Minimum property is the empty string, it will return null or the MinValue property
of the expected datatype in some cases. If the Minimum property cannot be converted from a string, it will return null.

 MaximumAsNative (object) - Alternative to the Maximum property. It takes a data type other than a string and
converts it to the string stored in the Maximum property. This property is not shown in the Properties Editor.

When setting this property, use the type given for the DataType property values listed here:

DataType Supported types

Integer, Positive Integer 32 bit integer (System.Int32)
Double, Positive Double,
Currency (all types)

Double (System.Double)

Date, DateTime System.DateTime
Time, Duration System.DateTime, System.TimeSpan, Integer (number of seconds),

Double (number of hours)

If you set an illegal value, it will throw an exception.

When getting this property, if the Maximum property is the empty string, it will return null or the MinValue property
of the expected datatype in some cases. If the Maximum property cannot be converted from a string, it will return null.

ControlToNative() method

The DataTypeCheckValidator and DataTypeCheckCondition provide the ControlToNative() method to convert the
textual value of the textbox to its native type. This is especially important because of the extensive formatting rules permitted
by the validator. For example, the Currency types may allow the currency symbol, thousands separator, and negative format,
all following the current CultureInfo object.

[C#]

object ControlToNative()

[VB]

Function ControlToNative() As Object

Return value

Returns an object representing the data type defined in the DataType property. You should typecast it to the expected type.
(See the example below.)

If the text cannot be converted, it returns null.

DataType Native Type Returned

Integer, Positive Integer 32 bit integer (System.Int32)
Double, Positive Double, Currency (all types) Double (System.Double)
Date, DateTime, Time, Duration System.DateTime

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 49 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Example

[C#]

int vResult = (int) DataTypeCheckValidator1.ControlToNative();

[VB]

Dim vResult As Integer = CType(DataTypeCheckValidator1.ControlToNative(), Integer)

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 50 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

CompareToValueValidator
Condition CompareToValueCondition

License Required Peter’s Professional Validation

Supported controls All that declare the ValidationPropertyAttribute including TextBox, ListBox, DropDownList

Can evaluate blank fields No (Use RequiredTextValidator)

The CompareToValueValidator compares a field’s textual value to another value that you supply. You specify the data type
of the values and the operator used to compare them. Operators include Less Than, Equal, Greater, Not Equal, Less Than and
Equal, Greater Than and Equal.

Click on any of these topics to jump to them:

 Adding Validation to a WebForm

 Using This Condition

 Condition Properties for CompareToValueCondition

 Properties for Error Messages

 ErrorFormatters: Customizing the Appearance of the Error Message

 Other Validator Properties that Customize the Appearance

 Changing When the Validator is Evaluated

 Other Properties

 Additional Validation Topics

Using This Condition
Specify the control to evaluate with the ControlIDToEvaluate property. The DataType property specifies the data type.
Data types like date and currency will follow culture specific formatting set on the current web page or overridden on
PeterBlum.DES.Globals.Page.CultureInfo.

Use the Operator property for the operator and ValueToCompare for the value. The ValueToCompare is a string but
should reflect the same data type you specified, following the culture format set in
PeterBlum.DES.Globals.Page.CultureInfo. Alternatively, you can programmatically assign a native type, like an integer or
DateTime, to the ValueToCompareAsNative property and it will convert the value into a correctly formatted string.

This Validator cannot evaluate when the control’s text is blank or it cannot be converted to the data type. Use the
RequiredTextValidator and DataTypeCheckValidator to handle each of those cases or combine their conditions within the
MultiConditionValidator to provide one error message.

The ErrorMessage property supports the token “{VALUETOCOMPARE}”. It displays the value from the
ValueToCompare property. See “Tokens in Error Messages” for details on tokens.

Example

Confirm that TextBox1’s value is greater than 10. TextBox1 must contain an integer.

<des:CompareToValueValidator id="CompareToValueValidator1" runat="server"
 ControlIDToEvaluate="TextBox1" DataType="Integer"
 ValueToCompare="10" Operator="GreaterThan"
 ErrorMessage="The value must greater than {VALUETOCOMPARE}">
</des:CompareToValueValidator>

http://msdn2.microsoft.com/en-us/library/system.web.ui.validationpropertyattribute.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 51 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Condition Properties for CompareToValueCondition
Each Validator control includes a Condition with several properties that require setup. The Properties Editor shows them in
the “Condition” section.

The following list are properties specific to this Condition:

 ControlIDToEvaluate, ControlToEvaluate, Trim, and NotCondition – See “Properties Common to most
Conditions”.

 DataType (string) – The name of the data type that this condition evaluates. If the user does not enter a string that is
compatible with this data type, the condition will not evaluate. (So use a DataTypeCheckValidator to detect errors in the
format.) It defaults to “String”. You can change it to any of these values: “String-Case Insensitive”, “Integer”, “Double”,
“Date”, “Currency”, “Currency with Symbol”, “Positive Integer”, “Positive Double”, “Positive Currency”, and “Positive
Currency with Symbol”.

Numeric, currency, and date types will follow culture specific formatting set on the current web page or overridden on
PeterBlum.DES.Globals.Page.CultureInfo. Integers are represented by signed 32 bit integer values. Any larger integer
value than 2,147,483,648 will not be evaluated.

When using any of the numeric, date or time textboxes from the Peter’s TextBoxes or Peter’s Date and Time modules,
this property is almost always ignored. The textbox will tell the validator exactly how it needs to be configured.
DataType is only used when evaluating a TimeOfDayTextBox with the DateTextBoxControlID assigned. In that case,
set DataType to DateTime or Time to select whether to validate both DateTextBox+TimeOfDayTextBox together or
just the TimeOfDayTextBox alone.

You can programmatically define new data types. See the Developer’s Guide for details.

 ValueToCompare (string) – A string representing the value to be compared. The value you enter here must be
compatible with the DataType selected. Otherwise, it will throw an exception at runtime. For example, if you set
DataType to Integer, you must enter only digits here. Alternatively, assign a native type to the
ValueToCompareAsNative property and it will assign ValueToCompare with the correct formatting.

If it is an empty string, it will still be used for comparison of String data types and report an exception for other data
types.

This value is the right side of the expression. The value of ControlIDToEvaluate is on the left side.

 Operator (enum PeterBlum.DES.ConditionOperator) – Determines how the data entry control is compared to
ValueToCompare. The enumerated type PeterBlum.DES.ConditionOperator has the following values:

o Equal (This is the default.) ControlIDToEvaluate = ValueToCompare

o NotEqual ControlIDToEvaluate <> ValueToCompare

o GreaterThan ControlIDToEvaluate > ValueToCompare

o GreaterThanEqual ControlIDToEvaluate >= ValueToCompare

o LessThan ControlIDToEvaluate < ValueToCompare

o LessThanEqual ControlIDToEvaluate <= ValueToCompare

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 52 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 ValueToCompareAsNative (object) - Alternative to the ValueToCompare property. It takes a data type other than a
string and converts it to the string stored in the ValueToCompare property. This property is not shown in the Properties
Editor.

When setting this property, use the type given for the DataType property values listed here:

DataType Supported types

Integer, Positive Integer 32 bit integer (System.Int32)
Double, Positive Double,
Currency (all types)

Double (System.Double)

Date, DateTime System.DateTime
Time, Duration System.DateTime, System.TimeSpan, Integer (number of seconds),

Double (number of hours)

If you set an illegal value, it will throw an exception.

When getting this property, if the ValueToCompare property is the empty string, it will return null or the MinValue
property of the expected datatype in some cases. If the ValueToCompare property cannot be converted from a string, it
will return null.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 53 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

CompareTwoFieldsValidator
Condition CompareTwoFieldsCondition

License Required Peter’s Professional Validation

Supported controls All that declare the ValidationPropertyAttribute including TextBox, ListBox, DropDownList

Can evaluate blank fields No (Use RequiredTextValidator or MultipleRequiredControlsValidator on both fields)

The CompareTwoFieldsValidator compares the textual values of two fields to each other. You specify the data type of the
values and the operator used to compare them. Operators include Less Than, Equal, Greater, Not Equal, Less Than and
Equal, Greater Than and Equal.

Click on any of these topics to jump to them:

 Adding Validation to a WebForm

 Using This Condition

 Condition Properties for CompareTwoFieldsCondition

 Properties for Error Messages

 ErrorFormatters: Customizing the Appearance of the Error Message

 Other Validator Properties that Customize the Appearance

 Changing When the Validator is Evaluated

 Other Properties

 Additional Validation Topics

Using This Condition
Specify the two controls to evaluate with the ControlIDToEvaluate and SecondControlIDToEvaluate properties. The
DataType property specifies the data type. Data types like date and currency will follow culture specific formatting set on
the current web page or overridden on PeterBlum.DES.Globals.Page.CultureInfo.

Use the Operator property for the operator.

This Validator cannot evaluate when either control’s text is blank or it cannot be converted to the data type. Use the
RequiredTextValidator and DataTypeCheckValidator to handle each of those cases or combine their conditions within the
MultiConditionValidator to provide one error message.

Example

Confirm that TextBox1 has an integer that is less than or equal to TextBox2.

<des:CompareTwoFieldsValidator id="CompareTwoFieldsValidator1" runat="server"
 ControlIDToEvaluate="TextBox1" SecondControlIDToEvaluate="TextBox2"
 DataType="Integer" Operator="LessThanEqual"
 ErrorMessage="The Thru textbox must be a larger number">
</des:CompareTwoFieldsValidator>

http://msdn2.microsoft.com/en-us/library/system.web.ui.validationpropertyattribute.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 54 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Condition Properties for CompareTwoFieldsCondition
Each Validator control includes a Condition with several properties that require setup. The Properties Editor shows them in
the “Condition” section.

The following list are properties specific to this Condition:

 ControlIDToEvaluate, ControlToEvaluate, ReportErrorsAfter, Trim, and NotCondition – See “Properties
Common to most Conditions”.

 SecondControlIDToEvaluate (string) – Identifies the second data entry control that will be evaluated. This property
takes the ID of the control. When a Validator control or Condition class includes this property, it must be assigned unless
you are using the SecondControlToEvaluate property.

An exception is thrown at runtime when this is blank, unknown, not in the same or ancestor naming container, is
Visible=false, or a control class that is not supported.

 SecondControlToEvaluate (System.Web.UI.Control) – An alternative to SecondControlIDToEvaluate. Use it when
the data entry control is not in the same or ancestor naming container. It must be assigned programmatically. For
example, if you have a Validator instance in the variable “Val2” and a textbox instance in the variable “TextBox2”, write
code like this: Val2.SecondControlToEvaluate = TextBox2.

When programmatically assigning properties to a Validator control or Condition class, if you have access to the control
object that will be evaluated, it is better to assign it here than assign its ID to the SecondControlIDToEvaluate property
because DES operates faster using SecondControlToEvaluate.

 DataType (string) – The name of the data type that this condition evaluates. If the user does not enter a string that is
compatible with this data type, the condition will not evaluate. (So use a DataTypeCheckValidator to detect errors in the
format.) It defaults to “String”. You can change it to any of these values: “String-Case Insensitive”, “Integer”, “Double”,
“Date”, “Currency”, “Currency with Symbol”, “Positive Integer”, “Positive Double”, “Positive Currency”, and “Positive
Currency with Symbol”.

Numeric, currency, and date types will follow culture specific formatting set on the current web page or overridden on
PeterBlum.DES.Globals.Page.CultureInfo. Integers are represented by signed 32 bit integer values. Any larger integer
value than 2,147,483,648 will not be evaluated.

When using any of the numeric, date or time textboxes from the Peter’s TextBoxes or Peter’s Date and Time modules,
this property is almost always ignored. The textbox will tell the validator exactly how it needs to be configured.
DataType is only used when evaluating a TimeOfDayTextBox with the DateTextBoxControlID assigned. In that case,
set DataType to DateTime or Time to select whether to validate both DateTextBox+TimeOfDayTextBox together or
just the TimeOfDayTextBox alone.

You can programmatically define new data types. See the Developer’s Guide for details.

 Operator (enum PeterBlum.DES.ConditionOperator) – Determines how ControlIDToEvaluate is compared to
SecondControlIDToEvaluate. The enumerated type PeterBlum.DES.ConditionOperator has the following
values:

o Equal (This is the default.) ControlIDToEvaluate = SecondControlIDToEvaluate

o NotEqual ControlIDToEvaluate <> SecondControlIDToEvaluate

o GreaterThan ControlIDToEvaluate > SecondControlIDToEvaluate

o GreaterThanEqual ControlIDToEvaluate >= SecondControlIDToEvaluate

o LessThan ControlIDToEvaluate < SecondControlIDToEvaluate

o LessThanEqual ControlIDToEvaluate <= SecondControlIDToEvaluate

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 55 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

RangeValidator
Condition RangeCondition

License Required Peter’s Professional Validation

Supported controls All that declare the ValidationPropertyAttribute including TextBox, ListBox, DropDownList

Can evaluate blank fields No (Use RequiredTextValidator)

The RangeValidator determines if a field’s textual value is between a minimum and maximum value. You determine the data
type of the values. The condition indicates success when the value is greater or equal to the minimum and less than or equal
to the maximum.

Click on any of these topics to jump to them:

 Adding Validation to a WebForm

 Using This Condition

 Condition Properties for RangeValidator

 Properties for Error Messages

 ErrorFormatters: Customizing the Appearance of the Error Message

 Other Validator Properties that Customize the Appearance

 Changing When the Validator is Evaluated

 Other Properties

 Additional Validation Topics

Using This Condition
Specify the control to evaluate with the ControlIDToEvaluate property. The DataType property specifies the data type.
Data types like date and currency will follow culture specific formatting set on the current web page or overridden on
PeterBlum.DES.Globals.Page.CultureInfo.

Use the Minimum and Maximum properties for the range. The Minimum and Maximum are strings but should reflect the
same data type you specified, following the culture format set in PeterBlum.DES.Globals.Page.CultureInfo. Alternatively,
you can programmatically assign a native type, like an integer or DateTime, to the MinimumAsNative and
MaximumAsNative properties and it will convert the value into a correctly formatted string.

This Validator cannot evaluate when the control’s text is blank or it cannot be converted to the data type. Use the
RequiredTextValidator and DataTypeCheckValidator to handle each of those cases or combine their conditions within the
MultiConditionValidator to provide one error message.

The Validator’s ErrorMessage property supports the tokens “{MINIMUM}” and “{MAXIMUM}” which are replaced by
the values from the Minimum and Maximum properties. See “Tokens in Error Messages” for details on tokens.

Example

TextBox1 must have a currency value that is between 0.01 and 10000.00.

<des:RangeValidator id=RangeValidator1 runat="server"
 ControlIDToEvaluate="TextBox1" DataType="Currency"
 Minimum="0.01" Maximum="10000"
 ErrorMessage="Only values between {MINIMUM} and {MAXIMUM} are accepted.">
</des:RangeValidator>

http://msdn2.microsoft.com/en-us/library/system.web.ui.validationpropertyattribute.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 56 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Condition Properties for RangeValidator
Each Validator control includes a Condition with several properties that require setup. The Properties Editor shows them in
the “Condition” section.

The following list are properties specific to this Condition:

 ControlIDToEvaluate, ControlToEvaluate, Trim, and NotCondition – See “Properties Common to most
Conditions”.

 DataType (string) – The name of the data type that this condition evaluates. If the user does not enter a string that is
compatible with this data type, the condition will not evaluate. (So use a DataTypeCheckValidator to detect errors in the
format.) It defaults to “String”. You can change it to any of these values: “String-Case Insensitive”, “Integer”, “Double”,
“Date”, “Currency”, “Currency with Symbol”, “Positive Integer”, “Positive Double”, “Positive Currency”, and “Positive
Currency with Symbol”.

Numeric, currency, and date types will follow culture specific formatting set on the current web page or overridden on
PeterBlum.DES.Globals.Page.CultureInfo. Integers are represented by signed 32 bit integer values. Any larger integer
value than 2,147,483,648 will not be evaluated.

When using any of the numeric, date or time textboxes from the Peter’s TextBoxes or Peter’s Date and Time modules,
this property is almost always ignored. The textbox will tell the validator exactly how it needs to be configured.
DataType is only used when evaluating a TimeOfDayTextBox with the DateTextBoxControlID assigned. In that case,
set DataType to DateTime or Time to select whether to validate both DateTextBox+TimeOfDayTextBox together or
just the TimeOfDayTextBox alone.

You can programmatically define new data types. See the Developer’s Guide for details.

 Minimum (string) – The minimum value of a range in a string formatted to match the selected DataType. For example,
if the DataType=Integer, this value can only contain digits. Alternatively, assign a native type, like Integer or
DateTime, to MinimumAsNative, and Minimum will be correctly formatted for you.

If it is "", there is no minimum.

It defaults to "".

 Maximum (string) – The maximum value of a range in a string formatted to match the selected DataType. For example,
if the DataType=Integer, this value can only contain digits. Alternatively, assign a native type, like Integer or
DateTime, to MaximumAsNative, and Maximum will be correctly formatted for you.

If it is "", there is no maximum.

It defaults to "".

 MinimumAsNative (object) - Alternative to the Minimum property. It takes a data type other than a string and converts
it to the string stored in the Minimum property. This property is not shown in the Properties Editor.

When setting this property, use the type given for the DataType property values listed here:

DataType Supported types

Integer, Positive Integer 32 bit integer (System.Int32)
Double, Positive Double,
Currency (all types)

Double (System.Double)

Date, DateTime System.DateTime
Time, Duration System.DateTime, System.TimeSpan, Integer (number of seconds),

Double (number of hours)

If you set an illegal value, it will throw an exception.

When getting this property, if the Minimum property is the empty string, it will return null or the MinValue property
of the expected datatype in some cases. If the Minimum property cannot be converted from a string, it will return null.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 57 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 MaximumAsNative (object) - Alternative to the Maximum property. It takes a data type other than a string and
converts it to the string stored in the Maximum property. This property is not shown in the Properties Editor.

When setting this property, use the type given for the DataType property values listed here:

DataType Supported types

Integer, Positive Integer 32 bit integer (System.Int32)
Double, Positive Double,
Currency (all types)

Double (System.Double)

Date, DateTime System.DateTime
Time, Duration System.DateTime, System.TimeSpan, Integer (number of seconds),

Double (number of hours)

If you set an illegal value, it will throw an exception.

When getting this property, if the Maximum property is the empty string, it will return null or the MinValue property
of the expected datatype in some cases. If the Maximum property cannot be converted from a string, it will return null.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 58 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

RegexValidator
Condition RegexCondition

License Required Peter’s Professional Validation

Supported controls All that declare the ValidationPropertyAttribute including TextBox, ListBox, DropDownList

Can evaluate blank fields Yes when the IgnoreBlankText property is false

The RegexValidator tests a field’s textual value against a regular expression. It is one of the most flexible Validators as it can
look at the patterns of text to determine if it matches. Regular expressions can be used to verify phone numbers, IP
Addresses, ID numbers, URLs, and so much more.

DES predefines a number of regular expressions that you can access in the Properties Editor for the Expression property (see
below) or by opening the des.config file to the <RegExPatterns> section. Here are the descriptive names of the
expressions already defined:

 U.S. Phone International Phone Any Phone
 French Phone Japanese Phone German Phone
 P.R.C Phone Email Address Web URL
 MailTo URL FTP URL Any URL
 U.S. Zip Code (5 and 9 digits)
 French Postal Code

 US and Canadian Postal Codes
 German Postal Code

 Canadian Postal Code
 Japanese Postal Code

 P.R.C Postal Code Credit Card with spaces Credit Card without spaces
 U.S. Social Security Number P.R.C Social Security (ID)

Click on any of these topics to jump to them:

 Adding Validation to a WebForm

 Learning About Regular Expressions

 Using This Condition

 Condition Properties for RegexValidator

 Properties for Error Messages

 ErrorFormatters: Customizing the Appearance of the Error Message

 Other Validator Properties that Customize the Appearance

 Changing When the Validator is Evaluated

 Other Properties

 Javascript expressions don’t consistently work

 Additional Validation Topics

Learning About Regular Expressions
Regular expressions are a complex language that requires an education in the topic. Here are several links that may assist
you:

MSDN Overview of Regular Expressions in .Net: http://msdn2.microsoft.com/en-us/library/hs600312.aspx

MSDN Regular Expression Language Elements: http://msdn2.microsoft.com/en-us/library/az24scfc.aspx

MSDN definition of the .Net Regex class: http://msdn2.microsoft.com/en-
us/library/system.text.regularexpressions.regex.aspx

The JavaScript language implementation of regular expressions:
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Objects:RegExp

RegExLib.com, A Regular Expression Library: http://www.regexlib.com/

http://msdn2.microsoft.com/en-us/library/system.web.ui.validationpropertyattribute.aspx�
http://msdn2.microsoft.com/en-us/library/hs600312.aspx�
http://msdn2.microsoft.com/en-us/library/az24scfc.aspx�
http://msdn2.microsoft.com/en-us/library/system.text.regularexpressions.regex.aspx�
http://msdn2.microsoft.com/en-us/library/system.text.regularexpressions.regex.aspx�
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Objects:RegExp�
http://www.regexlib.com/�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 59 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Using This Condition
Specify the control to evaluate with the ControlIDToEvaluate property.

Assign the regular expression in the Expression property. When you edit this property in the Properties Editor, it offers an
extensive and customizable list of pre-defined expressions. It also has a feature to test expressions.

Note: While regular expressions can be used to validate a particular data type, first consider using the
DataTypeCheckValidator for that type of validation.

The RegexValidator must be able to run your regular expression in JavaScript unless you elect to use server-side only
validation by setting the Validator’s EnableClientScript property to false. JavaScript’s definition of regular expressions is
a subset of the Regex class in .Net.

Example

Confirm that TextBox1 matches the pattern of a US Phone number.

<des:RegexValidator id="RegexValidator1" runat="server"
 ControlIDToEvaluate="TextBox1"
 Expression="^([1])?\s*(\(\d{3}\))?\s*\d{3}[\s\-]?\d{4}"
 ErrorMessage="The phone number must be in this format (###) ###-####">
</des:RegexValidator>

http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Objects:RegExp�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 60 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Condition Properties for RegexValidator
Each Validator control includes a Condition with several properties that require setup. The Properties Editor shows them in
the “Condition” section.

The following list are properties specific to this Condition:

 ControlIDToEvaluate, ControlToEvaluate, Trim, and NotCondition – See “Properties Common to most
Conditions”.

 Expression (string) – A regular expression that will be evaluated against the value of the field specified in
ControlIDToEvaluate. It must be compatible with both .Net and JavaScripts regular expression parser. When the value
of the control is blank, the condition cannot evaluate.

The Properties Editor offers this window to define, test, load and save regular expressions:

Enter the regular expression within the Pattern textbox. Click Select a Pattern to pick from a list of existing patterns.
You can add your own expressions or replace existing expressions with the Save This Pattern button.

Note: Regular expression patterns are written into the custom.DES.config file.

If you cannot find an existing pattern, the Help With Regular Expressions and Regex Character Chart buttons open
web pages with details on using regular expressions.

Test your expression before applying it to your RegexValidator control with the Test the expression box. This is
especially important if you select from the list of existing patterns because those defined by PeterBlum.com may not
exactly match your needs. You can edit the existing pattern and replace it under the same name. Later if you want to
return to the original pattern, the Select A Pattern dialog box offers a Restore To Default button.

See also “Javascript expressions don’t consistently work”.

 CaseInsensitive (Boolean) – When true, the regular expression parser will perform a case insensitive match. When
false, it will perform a case sensitive match. It defaults to true.

 Multiline (Boolean) – When true, it changes the meaning of the regular expression symbols "^" and "$" so they match
at the beginning and end, respectively, of any line, and not just the beginning and end of the entire string. It defaults to
false.

WARNING: Some browsers do not support the Multiline flag on client-side validation. This includes IE Mac 5.x and
Netscape 4.x. These browsers will abort processing the client-side JavaScript condition code when this option is
detected. Use this option with care.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 61 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 IgnoreBlankText (Boolean) – Determines how blank text is evaluated. When true, the condition cannot be evaluated.
When false, the condition evaluates as failed (reports an error). It defaults to true.

There are two common cases for setting this to false:

o To merge the RequiredTextCondition into this condition.

o When blank text is something you consider an illegal format no different than the regular expression
determining an illegal format.

 GlobalStorageName (string) – Use this property to improve speed. When your Expression property never changes,
assign a value here and the Expression will be converted into a .net Regex object the first time it is used. From then on,
that object will be used. It takes time for a .net Regex object to convert your expression into its internal format. With this
setting, that will only happen once, and it is further optimized by using the “Compiled” option on the .net Regex object.

You define a unique name for this expression and assign it to GlobalStorageName. For example, “PhoneNumber” or
“123abc”.

If you have several RegexValidators that use the same Expression value, use the same value of GlobalStorageName so
that they all share the same Regex object. This further improves your application’s speed.

When used, the .net Regex object is stored in the Application collection. Application[GlobalStorageName] is
assigned the Expression string. Application[GlobalStorageName + "_RE"] is assigned the Regex object. So
give this a name that will not conflict with anything else that you place into the Application collection.

WARNING: Several other Validators offer the GlobalStorageName property. Never use the same value amongst
different types of Validators.

 PrepareProperties (delegate PeterBlum.DES.RegexPrepareProperties) – When using the GlobalStorageName and you
run time consuming code to create the expression, put your time consuming code in a method assigned to
PrepareProperties. Your code will only be called if the expression is not yet cached. This increases the application
speed by avoiding that time consuming code when it’s not needed.

For example, your code accesses the database to retrieve a string that is searched within the Expression. Database queries
are time consuming.

Your method will update the properties of the RegexCondition, the Condition object of the RegexValidator. The
RegexCondition and RegexValidator share the same properties described throughout this section. Normally you assign
the Expression property. However, any of the properties can be changed.

Here is the format of a method assigned to PrepareProperties.

[C#]

public void MethodName(PeterBlum.DES.RegexCondition pCondition)

[VB]

Public Sub MethodName(ByVal pCondition As PeterBlum.DES.RegexCondition)

Parameters

pCondition

The Condition class for the RegexValidator. It has the same properties as shown in this section.

You assign your method programmatically like this:

[C#]

MyValidator.PrepareProperties =
 new PeterBlum.DES.RegexPrepareProperties(methodname);

[VB]

MyValidator.PrepareProperties = _
 New PeterBlum.DES.RegexPrepareProperties(AddressOf methodname)

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttpapplicationstateclasstopic.asp�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 62 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Example

Assigns the results from the GetPersonsName() method to the Expression property.

[C#]

public void ApplyExpression(PeterBlum.DES.RegexCondition pCondition)
{
 pCondition.Expression = GetPersonsName();
 pCondition.CaseInsensitive = true;
}

[VB]

Public Sub ApplyExpression(ByVal pCondition As _
 PeterBlum.DES.RegexCondition)
 pCondition.Expression = GetPersonsName()
 pCondition.CaseInsensitive = True
End Sub

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 63 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

CheckStateValidator
Condition CheckStateCondition

License Required Peter’s Professional Validation

Supported controls CheckBox, RadioButton, HtmlInputCheckBox, HtmlInputRadioButton

Can evaluate blank fields n/a

The CheckStateValidator evaluates the mark within a checkbox or radio button. You can select whether the condition allows
a marked or unmarked button.

The Condition of this Validator, CheckStateCondition, is more frequently used than the Validator itself. The Enabler
property often turns on a Validator based on the state of a checkbox or radio button. MultiConditionValidators often evaluate
checkboxes and radio buttons as part of their logic.

If you want to evaluate a RadioButtonList or CheckBoxList control, use the RequiredListValidator or
SelectedIndexValidator.

If you want to evaluate that at least one CheckBox or RadioButton control in different rows of a grid or Repeater, use the
CountTrueConditionsValidator with CheckStateConditions in its Conditions property.

Click on any of these topics to jump to them:

 Adding Validation to a WebForm

 Using This Condition

 Condition Properties for CheckStateValidator

 Properties for Error Messages

 ErrorFormatters: Customizing the Appearance of the Error Message

 Other Validator Properties that Customize the Appearance

 Changing When the Validator is Evaluated

 Other Properties

 Additional Validation Topics

Using This Condition
Specify the control to evaluate with the ControlIDToEvaluate property. The Checked property determines what state the
CheckBox or RadioButton’s Checked property must match to evaluate successfully.

RadioButtons only run their client-side ‘onclick’ event when clicked, not when they become unmarked as another radio
button is marked. If you want this Condition to be evaluated when you unmark a radiobutton not specified with
ControlIDToEvaluate, specify the other radiobuttons in ExtraControlsToRunThisAction.

Example

CheckBox1 must be marked checked.

<des:CheckStateValidator id="CheckStateValidator1" runat="server"
 ControlIDToEvaluate="CheckBox1" Checked="true"
 ErrorMessage="You must mark this field">
</des:CheckStateValidator>

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 64 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Condition Properties for CheckStateValidator
Each Validator control includes a Condition with several properties that require setup. The Properties Editor shows them in
the “Condition” section.

The following list are properties specific to this Condition:

 ControlIDToEvaluate, ControlToEvaluate, NotCondition, and ExtraControlsToRunThisAction – See “Properties
Common to most Conditions”.

 Checked (Boolean) – When true, the Condition indicates success when the CheckBox or RadioButton is marked.
When false, the Condition indicates success when the checkbox or radiobutton is not marked. It defaults to true.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 65 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

SelectedIndexValidator
Condition SelectedIndexCondition

License Required Peter’s Professional Validation

Supported controls ListBox, DropDownList, RadioButtonList, and CheckBoxList

Can evaluate blank fields No (Use RequiredListValidator)

The SelectedIndexValidator evaluates the SelectedIndex property of a ListBox, DropDownList, RadioButtonList, or
CheckBoxList. You provide an index into the list (starting at 0 for the first item) and whether you want the item at that index
to be highlighted/marked or not. The condition indicates success when the item at the given index matches the desired
highlight or mark state.

If you want to determine if one of these controls is unselected, use the RequiredListValidator.

If you want to determine if any of several SelectedIndexes are selected, use the “SelectedIndexRangesValidator”.

ALERT: Do not use this with the ASP.NET AJAX Control Toolkit’s CascadingDropDown control. The CascadingDropDown
does not support the SelectedIndex property on the server side. It only supports the textual value. So use a validator that
evaluates the text value, such as CompareToValueValidator.

Click on any of these topics to jump to them:

 Adding Validation to a WebForm

 Using This Condition

 Condition Properties for SelectedIndexValidator

 Properties for Error Messages

 ErrorFormatters: Customizing the Appearance of the Error Message

 Other Validator Properties that Customize the Appearance

 Changing When the Validator is Evaluated

 Other Properties

 Additional Validation Topics

Using This Condition
Specify the control to evaluate with the ControlIDToEvaluate property. The Index property determines the position whose
selected state is evaluated, and the Selected property determines the state.

Example

Select only the second item in ListBox1.

<des:SelectedIndexValidator id="SelectedIndexValidator1" runat="server"
 ControlIDToEvaluate="ListBox1" Index="1" Selected="true"
 ErrorMessage="You must select Credit Card when downloading the product.">
</des:SelectedIndexValidator>

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 66 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Condition Properties for SelectedIndexValidator
Each Validator control includes a Condition with several properties that require setup. The Properties Editor shows them in
the “Condition” section.

The following list are properties specific to this Condition:

 ControlIDToEvaluate, ControlToEvaluate, and NotCondition – See “Properties Common to most Conditions”.

 Index (Integer) – The position in the list to have its selection state evaluated. The first item in the list is position 0. If you
supply an index beyond the end of the list, the Condition cannot evaluate. It defaults to 0.

 Selected (Boolean) – Determines the state of the list's selection at the position in Index. If that position's state matches
this value, the Condition indicates success. When true, you are looking for the item to be selected or marked. When
false, you are looking for the item to be unselected or unmarked.

When evaluating to a CheckBoxList or RadioButtonList, it compares to the Checked property on the control. For
ListBox and DropDownList controls, it compares the SelectedIndex property to Index. It defaults to true.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 67 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

TextLengthValidator
Condition TextLengthCondition

License Required Peter’s Professional Validation

Supported controls TextBox, HtmlInputText

Can evaluate blank fields Yes

The TextLengthValidator evaluates the number of characters in a textbox against a minimum and/or maximum. It can
optionally evaluate the total characters in two textboxes. If you want to count the number of words, use the
WordCountValidator.

The browser will automatically maintain a maximum limit on <input type='text'> fields when you set the
maxlength attribute. So consider using the MaxLength property on the TextBox control instead of this Validator when
TextBox is set to TextMode=SingleLine.

DES provides the TextCounter control in the Peter’s Interactive Pages module. It can compliment the TextLengthValidator.

Click on any of these topics to jump to them:

 Adding Validation to a WebForm

 Using This Condition

 Condition Properties for TextLengthValidator

 Properties for Error Messages

 ErrorFormatters: Customizing the Appearance of the Error Message

 Other Validator Properties that Customize the Appearance

 Changing When the Validator is Evaluated

 Other Properties

 Additional Validation Topics

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 68 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Using This Condition
Specify the control to evaluate with the ControlIDToEvaluate property; if you want to evaluate the combined length of two
controls, specify the second in SecondControlIDToEvaluate. The Minimum and Maximum properties determine the limits
when they are not 0. When using the Minimum property, if you do not want errors reported for an empty textbox, set
IgnoreBlankText to true.

The Validator’s ErrorMessage property supports several tokens. “{COUNT}” is the number of characters entered.
“{EXCEEDS}” is the number of characters exceeding the minimum or maximum. “{EXCEEDS:character:characters}” uses
the word “character” when {EXCEEDS} is 1; otherwise it uses the word “characters”. “{MINIMUM}” is replaced by the
property Minimum. “{MAXIMUM}” is replaced by the property Maximum. See “Tokens in Error Messages” for details on
tokens.

Examples

<des:TextLengthValidator id="TextLengthValidator1" runat="server"
 ControlIDToEvaluate="TextBox1" Maximum="100"
 ErrorMessage="You have entered {EXCEEDS} too many
 {EXCEEDS:character:characters}.">
</des:TextLengthValidator>

<des:TextLengthValidator id="TextLengthValidator2" runat="server"
 ControlIDToEvaluate="TextBox2" Minimum="5"
 ErrorMessage="Please enter at least {MINIMUM} characters.">
</des:TextLengthValidator>

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 69 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Condition Properties for TextLengthValidator
Each Validator control includes a Condition with several properties that require setup. The Properties Editor shows them in
the “Condition” section.

The following list are properties specific to this Condition:

 ControlIDToEvaluate, ControlToEvaluate, ReportErrorsAfter, Trim, and NotCondition – See “Properties
Common to most Conditions”.

 Minimum (Integer) – The minimum number of characters in the textbox. When it is 0, there is no minimum. It defaults
to 0.

 Maximum (Integer) – The maximum number of characters in the textbox. When it is 0, there is no maximum. It defaults
to 0.

 IgnoreBlankText (Boolean) – By default, when you use the Minimum property, a blank textbox will be reported as an
error. If you do not require text in the textbox, set IgnoreBlankText to true. It defaults to false.

 SecondControlIDToEvaluate (string) – Identifies a second TextBox control. When assigned, the total characters in the
two textboxes are added together before comparing to the minimum and maximum. Leave it blank if you only need to
evaluate one TextBox. This property takes the ID of the control.

An exception is thrown at runtime when this is unknown, not in the same or ancestor naming container, is Visible=false,
or a control class that is not supported.

 SecondControlToEvaluate (System.Web.UI.Control) – An alternative to SecondControlIDToEvaluate. Use it when
the TextBox control is not in the same or ancestor naming container. It must be assigned programmatically. For example,
if you have a Validator instance in the variable “Val2” and a textbox instance in the variable “TextBox2”, write code like
this: Val2.SecondControlToEvaluate = TextBox2.

When programmatically assigning properties to a Validator control or Condition class, if you have access to the control
object that will be evaluated, it is better to assign it here than assign its ID to the SecondControlIDToEvaluate property
because DES operates faster using SecondControlToEvaluate.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 70 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

EmailAddressValidator
Condition EmailAddressCondition

License Required Peter’s Professional Validation

Supported controls TextBox, HtmlInputText

Can evaluate blank fields Yes when the IgnoreBlankText property is false

The EmailAddressValidator reviews the text of an email address to confirm that it matches valid email address patterns. In
addition, you can hook it up to a third party email validation engine such as Advanced Intellect’s aspNetMX. AspNetMX can
confirm that the address is genuine in several ways. AspNetMX must be purchased separately, but it is not required to use
this Validator to check the email address pattern.

Click on any of these topics to jump to them:

 Adding Validation to a WebForm

 Using This Condition

 Condition Properties for EmailAddressValidator

 Properties for Error Messages

 ErrorFormatters: Customizing the Appearance of the Error Message

 Other Validator Properties that Customize the Appearance

 Changing When the Validator is Evaluated

 Other Properties

 Additional Validation Topics

 Using aspNetMX

 Changing the Default Email Address Pattern

http://www.aspnetmx.com/�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 71 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Using This Condition
Specify the textbox to evaluate with the ControlIDToEvaluate property. If you want to allow multiple email addresses in
the same textbox, set MultipleAddressesAllowed to true. You can define the delimiter character in DelimiterCharacter,
which defaults to a semicolon. You can allow spaces after the delimiter when DelimiterAllowsSpaces is true.

If you are using a third party validation engine, set up the OnEmailAddressValidate event handler to call that engine and
return true if the email address is valid.

The following example does not show the use of OnEmailAddressValidate. See the properties for details on using this
event handler.

<des:EmailAddressValidator id="EmailAddressValidator1" runat="server"
 ControlIDToEvaluate="TextBox1"
 ErrorMessage="Invalid email address">
</des:EmailAddressValidator>

Omitting Certain Domains

Often users want to prevent email addresses containing specific domains. The EmailAddressValidator cannot handle this, but
DES’s UnwantedWordsValidator can. By using a separate validator, you can offer a clear error message on what’s wrong
with an otherwise valid email address.

Here is a definition of the UnwantedWordsValidator that omits emails from “hotmail.com”, “yahoo.com”, and “gmail.com”.

<des:UnwantedWordsValidator id="UnwantedWordsValidator1" runat="server"
ErrorMessage="The domain {UNWANTED} is not supported by this site. Please try
another email address." ControlIDToEvaluate="TextBox1">
 <Items>
 <des:UnwantedWordsItem Value="hotmail.com"></des:UnwantedWordsItem>
 <des:UnwantedWordsItem Value="yahoo.com"></des:UnwantedWordsItem>
 <des:UnwantedWordsItem Value="gmail.com"></des:UnwantedWordsItem>
 </Items>
</des:UnwantedWordsValidator>

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 72 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Condition Properties for EmailAddressValidator
Each Validator control includes a Condition with several properties that require setup. The Properties Editor shows them in
the “Condition” section.

The following list are properties specific to this Condition:

 ControlIDToEvaluate, ControlToEvaluate, Trim, and NotCondition – See “Properties Common to most
Conditions”.

 IgnoreBlankText (Boolean) – Determines how blank text is evaluated. When true, the condition cannot be evaluated.
When false, the condition evaluates as failed (reports an error). It defaults to true.

This is often set to false to merge RequiredTextCondition into this condition.

 MultipleAddressesAllowed (Boolean) – Determines if the user can enter multiple email addresses, separated by the
delimiter character defined in DelimiterCharacter and optionally followed by a space, when DelimiterAllowsSpaces is
true.

It defaults to false.

 DelimiterCharacter (String) – A single character used as the delimiter between email addresses. Used when
MultipleAddressesAllowed is true. Common delimiters are semicolon (;), comma (,) and space.

It defaults to a semicolon (;).

 DelimiterAllowsSpaces (Boolean) – When multiple email addresses are allowed, this determines if spaces are allowed
after the delimiter character. It allows users to have some flexibility in formatting. When true, one or more spaces are
permitted after the delimiter. When false, no space is allowed (unless the delimiter itself is a space).

It defaults to false.

 AllowExtraText (Boolean) – Determines if the email address should permit additional text after it. When true, it
permits additional text. No validation is performed on that additional text. When false, only the email address is
permitted. It defaults to false.

 OnEmailAddressValidate (delegate PeterBlum.DES.ExtendedEmailValidation) – Set up this event handler when you
are using a third party email address validation system. Write a method that uses the third party validation engine to
analyze the email text and return true if it’s valid.

Your method will only be called if the text was not blank and the built-in pattern evaluation approved the text.

Here is the definition of the delegate:

[C#]

public delegate bool ExtendedEmailValidation(object pSender,
 string pEmailText);

[VB]

Public Delegate Function ExtendedEmailValidation(_
 ByVal pSender As Object, ByVal pEmailText As String) As Boolean

Parameters

pSender

The EmailAddressCondition object that is getting evaluated.

pEmailText

The text from the TextBox. Evaluate this string to confirm that it is a valid email address.

Return value

When true, the pEmailText is a valid email address. When false, it is not.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 73 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Example

This example uses a fictional object SuperEmailTest to determine if pEmailText is valid or not. Its Validate()
method returns true when it is valid. If you are using Advanced Intellect’s aspNetMX product, see below for explicit
instructions.

[C#]

protected void Page_Load(object sender, System.EventArgs e)
{
// set up the Event Handler on the validator
// notice that it does not use the += notation common to many event handlers
 EmailAddressValidator1.OnEmailAddressValidate =
 new PeterBlum.DES.ExtendedEmailValidation(CheckEmailAddress);
}

protected bool CheckEmailAddress(object pSender, string pEmailText)
{
 return SuperEmailTest.Validate(pEmailText); // fictional engine
}

[VB]

Protected Sub Page_Load(ByVal sender As object, ByVal e As System.EventArgs)
' set up the Event Handler on the validator

 ' notice no AddHandler here, unlike most event handlers
 EmailAddressValidator1.OnEmailAddressValidate =
 New PeterBlum.DES.ExtendedEmailValidation(AddressOf CheckEmailAddress)
End Sub

Protected Function CheckEmailAddress(_
 ByVal pSender As Object, ByVal pEmailText As String) As Boolean
 Return SuperEmailTest.Validate(pEmailText) ' fictional engine
End Function

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 74 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Using aspNetMX
Advanced Intellect’s aspNetMX provides a terrific extension to this Validator. While the Validator can only analyze the text
pattern to be sure it conforms to the standards of email addresses, it takes aspNetMX to determine if the email address is a
real one. This tool can help you avoid filling up your database with useless email addresses. AspNetMX is a separate product
available at http://www.aspNetMX.com.

Note: PeterBlum.com does not provide technical support on aspNetMX. You should install and test this product following the
aspNetMX documentation and technical support.

Here is how to use it in your web application with DES.

1. Install AspNetMX according to the instructions. It will add the assembly aspNetMX.dll into the Global Assembly
Cache. Don’t forget to install it onto each web server that will use this web application.

2. If you are using Visual Studio, add a reference to aspNetMX.dll into your web application project.

3. You will set up the MXValidate object in the Application_Start() method of Global.asax. Set up involves
these actions (examples are shown below):

o Create the object.

o Save a reference to it in the Application collection so it’s available throughout your web app.

o Establish any properties you’d like. Consider DnsServer, KnownProperties, and anything else described in the
“Tips and Tricks” section of the aspNetMX help file.

4. On the page where you collect Email addresses, set up the Page_Load() method with the OnEmailAddressValidate
event handler.

5. Code the OnEmailAddressValidate event handler to retrieve the MXValidate object from the Application object and
call its MXValidate.Validate() method. AspNetMX recommends that you establish a level of
MXValidateLevel.MXRecords as described in the “Tips and Tricks” section. Return true when the
MXValidate.Validate() method returns a level that you consider acceptable.

Here is an example of the Application_Start(), Page_Load(), and CheckEmailAddress event handler methods.

[C#]

// Application_Start goes in your Global.asax file
protected void Application_Start(Object sender, EventArgs e)

 {
 aspNetMX.MXValidate mx = new aspNetMX.MXValidate();
 Application.Add("aspNetMX", mx);
// set properties. These examples are taken from Tips and Tricks
 mx.DnsServer = "1.2.3.4";
 string domains =
 "hotmail.com;aol.com;yahoo.com;usa.net;bigfoot.com;earthlink.net";
 mx.AddKnownDomains(domains);
 mx.SMTPHello = "myserver.mydomain.com";
 string bad = "test@test.com;a@a.com;asdf@asdf.com";
 mx.AddBadEmails(bad);
 // establish any other attributes you might like
}

http://www.aspnetmx.com/�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 75 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

// Page_Load and CheckEmailAddress go into the web form
protected void Page_Load(object sender, System.EventArgs e)
{
// set up the Event Handler on the validator
// notice that it does not use the += notation common to many event handlers
 EmailAddressValidator1.OnEmailAddressValidate =
 new PeterBlum.DES.ExtendedEmailValidation(CheckEmailAddress);
}

protected bool CheckEmailAddress(object pSender, string pEmailText)
{
 aspNetMX.MXValidate mx =
 (aspNetMX.MXValidate) this.Application["aspNetMX"];
// you must determine your preferred levels below
 return mx.Validate(pEmailText, aspNetMX.MXValidateLevel.MXRecords) >=
 aspNetMX.ValidateLevel.MXRecords;
}

[VB]

' Application_Start goes in your Global.asax file
Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)
 Dim mx As aspNetMX.MXValidate = New aspNetMX.MXValidate()

 Application.Add("aspNetMX", mx)
' set properties. These examples are taken from Tips and Tricks
 mx.DnsServer = "1.2.3.4"
 Dim domains As String = _
 "hotmail.com;aol.com;yahoo.com;usa.net;bigfoot.com;earthlink.net"
 mx.AddKnownDomains(domains)
 mx.SMTPHello = "myserver.mydomain.com"
 Dim bad As String = "test@test.com;a@a.com;asdf@asdf.com"
 mx.AddBadEmails(bad)
 ' establish any other attributes you might like
End Sub

' Page_Load and CheckEmailAddress go into the web form
Protected Sub Page_Load(ByVal sender As object, ByVal e As System.EventArgs)
' set up the Event Handler on the validator

 ' notice no AddHandler here, unlike most event handlers
 EmailAddressValidator1.OnEmailAddressValidate =
 New PeterBlum.DES.ExtendedEmailValidation(AddressOf CheckEmailAddress)
End Sub

Protected Function CheckEmailAddress(_
 ByVal pSender As Object, ByVal pEmailText As String) As Boolean
 Dim mx As aspNetMX.MXValidate = _
 CType(Me.Application["aspNetMX"], aspNetMX.MXValidate)
' you must determine your preferred levels below
 Return mx.Validate(pEmailText, aspNetMX.MXValidateLevel.MXRecords)_
 >= aspNetMX.ValidateLevel.MXRecords
End Function

Changing the Default Email Address Pattern
There are times when you expect certain email addresses to be rejected that are accepted by this validator. The validator uses
a regular expression to determine validity. The default is:

^([\w\.!#\$%\-+.'_]+@[A-Za-z0-9\-]+(\.[A-Za-z0-9\-]{2,})+)

If you want to edit it, open the Global Settings Editor and edit it in the EmailAddressValidatorRegEx property in the
“Other Validator Properties” topic.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 76 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

MultipleRequiredControlsValidator
Condition MultipleRequiredControlsCondition

License Required Peter’s More Validators

Supported controls All that declare the ValidationPropertyAttribute including TextBox, ListBox, DropDownList. Also
CheckBox and RadioButton

Can evaluate blank fields Yes

The MultipleRequiredControlsValidator evaluates two or more data entry controls to evaluate if they are blank or have data.
This is an extension of the idea behind the RequiredTextValidator and RequiredListValidator by looking at the state of
several controls and determine if the right combination has data or not.

Based on the Mode property, you can demand the following:

 All
 All or None
 Only one
 At least one
 A range

It supports a mixture of data entry controls. All DES TextBoxes, native TextBox, ListBox, DropDownList, CheckBoxList,
RadioButtonList, CheckBox, and RadioButton. With lists, it can evaluate either the current textual value or the selected
index.

Click on any of these topics to jump to them:

 Adding Validation to a WebForm

 Using This Condition

 Adding Textual Controls to ControlsToEvaluate

 Adding List Controls to ControlsToEvaluate

 Adding CheckBox/RadioButton Controls to ControlsToEvaluate

 Determining the number of controls that are required

 Condition Properties for MultipleRequiredControlsValidator

 Properties for Error Messages

 ErrorFormatters: Customizing the Appearance of the Error Message

 Other Validator Properties that Customize the Appearance

 Changing When the Validator is Evaluated

 Other Properties

 Additional Validation Topics

http://msdn2.microsoft.com/en-us/library/system.web.ui.validationpropertyattribute.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 77 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Using This Condition
Specify the first two textboxes to evaluate with the ControlIDToEvaluate and SecondControlIDToEvaluate properties. If
you don’t have textboxes, it is acceptable to leave them unassigned. Use the ControlsToEvaluate property to define a list of
additional controls (textual and list-type).

Click on any of these topics to jump to them:

 Adding Textual Controls to ControlsToEvaluate

 Adding List Controls to ControlsToEvaluate

 Adding CheckBox/RadioButton Controls to ControlsToEvaluate

 Determining the number of controls that are required

Adding Textual Controls to ControlsToEvaluate

You add PeterBlum.DES.RequiredTextControl objects to ControlsToEvaluate for evaluating text. Assign the
textual control’s ID to the RequiredTextControl.ControlIDToEvaluate property. Define an alternative to what is
considered unassigned with the UnassignedValues and UnassignedCaseInsensitive properties.

Adding to ControlsToEvaluate in ASP.NET Declarative Syntax

<des:MultipleRequiredControlsValidator [properties] >
 <ControlsToEvaluate>
 <des:RequiredTextControl ControlIDToEvaluate="TextBox1"
 UnassignedValues="Fill me in" UnassignedCaseInsensitive="false" />
 </ControlsToEvaluate>
</des:MultipleRequiredControlsValidator>

Adding to ControlsToEvaluate Programmatically

Call the AddTextControl() method on the ControlsToEvaluate property, passing in a reference to the textbox and
optionally values for the UnassignedValues and UnassignedCaseInsensitive properties.

[C#]

void AddTextControl(Control pControlToEvaluate);

void AddTextControl(Control pControlToEvaluate, string pUnassignedValues);

void AddTextControl(Control pControlToEvaluate, string pUnassignedValues,
 bool pUnassignedCaseInsensitive);

[VB]

Sub AddTextControl(ByVal pControlToEvaluate As Control)

Sub AddTextControl(ByVal pControlToEvaluate As Control, _
 ByVal pUnassignedValues As String)

Sub AddTextControl(ByVal pControlToEvaluate As Control, _
 ByVal pUnassignedValues As String, _
 ByVal pUnassignedCaseInsensitive As Boolean)

For example:

MRCValidator1.ControlsToEvaluate.AddTextControl(TextBox1);

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 78 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Adding List Controls to ControlsToEvaluate

Add PeterBlum.DES.RequiredListControl objects to ControlsToEvaluate for evaluating the SelectedIndex
property of list controls. Assign the list control’s ID to the RequiredListControl.ControlIDToEvaluate property. Define
the index considered unassigned with the UnassignedIndex property.

ALERT: The ASP.NET AJAX Control Toolkit’s CascadingDropDown control does not support the SelectedIndex property on
the server side. It only supports the textual value. Treat its values like a textbox, not a DropDownList. Assign its controls
using the ControlsToEvaluate property with a RequiredTextControl, not a RequiredListControl. Set the
RequiredTextControl.UnassignedValues property to be “|your prompt text”. (That is a pipe character as the first letter.)

Using ASP.NET Declarative Syntax

<des:MultipleRequiredControlsValidator [properties] >
 <ControlsToEvaluate>
 <des:RequiredListControl ControlIDToEvaluate="ListBox1"
 UnassignedIndex="0" />
 </ControlsToEvaluate>
</des:MultipleRequiredControlsValidator>

Programmatically

Call the AddListControl() method on the ControlsToEvaluate property, passing in a reference to the list control and
optionally the value for the UnassignedIndex property.

[C#]

void AddListControl(Control pControlToEvaluate);

void AddListControl(Control pControlToEvaluate, int pUnassignedIndex);

 [VB]

Sub AddListControl(ByVal pControlToEvaluate As Control)

Sub AddListControl (ByVal pControlToEvaluate As Control, _
 ByVal pUnassignedIndex As Integer)

For example:

MRCValidator1.ControlsToEvaluate.AddListControl(ListBox1, 0);

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 79 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Adding CheckBox/RadioButton Controls to ControlsToEvaluate

You add PeterBlum.DES.RequiredCheckStateControl objects to ControlsToEvaluate. Assign the control’s ID
to the RequiredCheckStateControl.ControlIDToEvaluate property. By default, it assumes an unchecked control is
unassigned and checked is assigned. If you want to switch that, set the RequiredCheckStateControl.CheckedIsAssigned
property to false.

Adding to ControlsToEvaluate in ASP.NET Declarative Syntax

<des:MultipleRequiredControlsValidator [properties] >
 <ControlsToEvaluate>
 <des:RequiredCheckStateControl ControlIDToEvaluate="CheckBox1" />
 <des:RequiredCheckStateControl ControlIDToEvaluate="CheckBox2"
 CheckedIsAssigned="false" />
 </ControlsToEvaluate>
</des:MultipleRequiredControlsValidator>

Adding to ControlsToEvaluate Programmatically

Call the AddCheckStateControl() method on the ControlsToEvaluate property, passing in a reference to the
CheckBox or RadioButton and if CheckIsAssigned should be false, pass false as the second parameter.

[C#]

void AddCheckStateControl(Control pControlToEvaluate);

void AddCheckStateControl(Control pControlToEvaluate, bool pCheckedIsAssigned);

 [VB]

Sub AddCheckStateControl(ByVal pControlToEvaluate As Control)

Sub AddCheckStateControl(ByVal pControlToEvaluate As Control, _
 ByVal pCheckedIsAssigned As Boolean)

For example:

MRCValidator1.ControlsToEvaluate.AddCheckStateControl(CheckBox1);

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 80 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Determining the number of controls that are required

Use the Mode property to determine how many must be assigned. If you select Range, fill in Minimum and Maximum.

Example 1: TextBoxes

5 textboxes are evaluated. At least one must be assigned.

<des:MultipleRequiredControlsValidator id="MRCV1" runat="server"
 ErrorMessage="Fill in at least one."
 ControlIDToEvaluate="TextBox1" SecondControlIDToEvaluate="TextBox2"
 Mode="AtLeastOne">
 <ControlsToEvaluate>
 <des:RequiredTextControl ControlIDToEvaluate="TextBox3" />
 <des:RequiredTextControl ControlIDToEvaluate="TextBox4" />
 <des:RequiredTextControl ControlIDToEvaluate="TextBox5" />
 </ControlsToEvaluate>
</des:MultipleRequiredControlsValidator>

Example 2: ListBoxes

3 listboxes are evaluated. All or None must be assigned.

<des:MultipleRequiredControlsValidator id="MRCV2" runat="server"
 ErrorMessage="Fill all lists in or leave them unassigned."
 Mode="AllOrNone">
 <ControlsToEvaluate>
 <des:RequiredListControl ControlIDToEvaluate="ListBox1" />
 <des:RequiredListControl ControlIDToEvaluate="ListBox2" />
 <des:RequiredListControl ControlIDToEvaluate="ListBox3" />
 </ControlsToEvaluate>
</des:MultipleRequiredControlsValidator>

Example 3: CheckBoxes

3 CheckBoxes are evaluated. All or None must be assigned.

<des:MultipleRequiredControlsValidator id="MRCV3" runat="server"
 ErrorMessage="Mark all or leave them unassigned."
 Mode="AllOrNone">
 <ControlsToEvaluate>
 <des:RequiredCheckStateControl ControlIDToEvaluate="CheckBox1" />
 <des:RequiredCheckStateControl ControlIDToEvaluate="CheckBox2" />
 <des:RequiredCheckStateControl ControlIDToEvaluate="CheckBox3" />
 </ControlsToEvaluate>
</des:MultipleRequiredControlsValidator>

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 81 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Condition Properties for MultipleRequiredControlsValidator
Each Validator control includes a Condition with several properties that require setup. The Properties Editor shows them in
the “Condition” section.

The following list are properties specific to this Condition:

 ControlIDToEvaluate (string) – Identifies a textual data entry control that will be evaluated. This property takes the ID
of the control. It is not required. Use it when you have a textbox whose unassigned value is "".

Add additional controls using the SecondControlIDToEvaluate and ControlsToEvaluate properties.

 ControlToEvaluate (System.Web.UI.Control) – An alternative to ControlIDToEvaluate. Use it when the textual data
entry control is not in the same or ancestor naming container. It must be assigned programmatically. For example, if you
have a Validator instance in the variable “Val1” and a textbox instance in the variable “TextBox1”, write code like this:
Val1.ControlToEvaluate = TextBox1.

When programmatically assigning properties to a Validator control or Condition class, if you have access to the control
object that will be evaluated, it is better to assign it here than assign its ID to the ControlIDToEvaluate property
because DES operates faster using ControlToEvaluate.

 SecondControlIDToEvaluate (string) – Identifies a textual data entry control that will be evaluated. This property takes
the ID of the control. It is not required. Use it when you have a textbox whose unassigned value is "".

Add additional controls using the ControlsToEvaluate property.

 SecondControlToEvaluate (System.Web.UI.Control) – An alternative to SecondControlIDToEvaluate. Use it when
the textual data entry control is not in the same or ancestor naming container. It must be assigned programmatically. For
example, if you have a Validator instance in the variable “Val2” and a textbox instance in the variable “TextBox2”, write
code like this: Val2.SecondControlToEvaluate = TextBox2.

When programmatically assigning properties to a Validator control or Condition class, if you have access to the control
object that will be evaluated, it is better to assign it here than assign its ID to the SecondControlIDToEvaluate property
because DES operates faster using SecondControlToEvaluate.

 ControlsToEvaluate (PeterBlum.DES.RequiredControlsToEvaluate) – Create a list of data entry controls to evaluate in
addition to those defined in ControlIDToEvaluate and SecondControlIDToEvaluate. It can contain a mixture of
control types.

When using a textual data entry controls, add a PeterBlum.DES.RequiredTextControl class to the list. See
“Adding Textual Controls to ControlsToEvaluate”.

When evaluating the SelectedIndex of a list type control, add a PeterBlum.DES.RequiredListControl class
to the list. See “Adding List Controls to ControlsToEvaluate”.

When evaluating a CheckBox or RadioButton control, add a PeterBlum.DES.RequiredCheckStateControl
class to the list. See “Adding CheckBox/RadioButton Controls to ControlsToEvaluate”.

 Mode (enum PeterBlum.DES.MultipleRequiredControlsMode) – Determines how many of the data entry controls must
have data to avoid an error.

It determines the data entry controls through your assignments made to the ControlIDToEvaluate,
SecondControlIDToEvaluate and ControlsToEvaluate properties.

The enumerated type PeterBlum.DES.MultipleRequiredControlsMode has these values:

o All – All must have data.

o AllOrNone – Either all must have data or none have data.

o AtLeastOne – At least one must have data.

o OnlyOne – Only one can have data.

o Range – Count the number that have data. That number of fields must be inside a range determined by the
Minimum and Maximum properties.

It defaults to MultipleRequiredControlsMode.All.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 82 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 Minimum (integer) – When Mode is set to Range, it determines the minimum number of data entry controls that are
required. If 0, it is ignored. It defaults to 0.

 Maximum (integer) – When Mode is set to Range, it determines the maximum number of data entry controls that are
required. If 0, it is ignored. It defaults to 0.

 ReportErrorsAfter, Trim and NotCondition– See “Properties Common to most Conditions”.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 83 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

RequiredSelectionValidator
Condition RequiredSelectionCondition

License Required Peter’s More Validators

Supported controls ListView, DataList, Calendar, MultiSelectionCalendar, MonthYearPicker, TimePicker. It is
extendable.

Can evaluate blank fields Yes

The RequiredSelectionValidator is another validator that checks for required data to be assigned. In this case, it is for non-
textual and non-list controls that display data, usually in a HTML table. Examples are ListView, Calendar, and
MonthYearPicker. All of these are supported automatically by default. You can also support other controls by adding
PeterBlum.DES.RequiredSelectionControl objects to the <RequiredSelectionControls> section of the
custom.des.config file.

When your data is textual, use the RequiredTextValidator. When it’s a list build upon HTML form elements (<select> and
<input>, use RequiredListValidator.

Click on any of these topics to jump to them:

 Adding Validation to a WebForm

 Using This Condition

 Supporting Other Controls

 Condition Properties for RequiredSelectionValidator

 Properties for Error Messages

 ErrorFormatters: Customizing the Appearance of the Error Message

 Other Validator Properties that Customize the Appearance

 Changing When the Validator is Evaluated

 Other Properties

 Additional Validation Topics

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 84 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Using This Condition
Specify the control to evaluate with the ControlIDToEvaluate property.

When you use a ListView or DataIndex control, it only performs server side validation, using the control’s SelectedIndex
property. When SelectedIndex is -1, it does not have a selection.

When you use a DES Calendar, MultiSelectionCalendar, MonthYearPicker or TimePicker, it performs client and server side
validation.

Example

<des:RequiredSelectionValidator id="RequiredSelectionValidator1" runat="server"
 ControlIDToEvaluate="Calendar1" ErrorMessage="Required">
</des:RequiredSelectionValidator>

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 85 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Supporting Other Controls
You can extend this validator to support many controls that display data without using standard form elements of <input>,
<textarea>, or <select>. You will define a PeterBlum.DES.RequiredSelectionControl object that
describes the type of control and how its client and server side validation is evaluated. Usually this object is setup in the
<RequiredSelectionControls> section of the web.config file. If that section is missing, add it prior to the
</configuration> tag.

Here is the schema for that tag.

<RequiredSelectionControl type="full class name" [assembly="assemblyname"]>
 <Property name="propertyname" value="propertyvalue"/>
 <Property name="propertyname2" value="propertyvalue"/>
</RequiredSelectionControl>

type – The full class name of the control, such as “System.Web.UI.WebControls.Calendar”.

assembly – Only include if the control is not in the PeterBlum.DES.dll assembly. It is the name of the assembly containing
the control without the “.dll” extension.

There can be a list of <Property> tags. Each holds one property on the RequiredSelectionControl class. Properties are
described below.

Setting up Client Side Validation

Client-side validation can only be supported if you write a JavaScript function that takes the id of the control and returns a
value of false, null, or 0 to represent it does not have a selection. (All other values represent a selection.) Some third party
controls may already have such a function written.

Here is a sample function:

function HasSelection(pID)
{
 // evaluate the control
 return MyGetDate(pID) != null; // GetDate assumed to return null when no selection
}

Assign the name of your function to the RequiredSelectionControl.SelectionFunctionName property as shown here:

<Property name="SelectionFunctionName" value="HasSelection" />

Client-side validation is optional. Some controls do not have the information necessary to determine their client side value. If
you cannot create the JavaScript function, do not assign the SelectionFunctionName property.

Setting up Server Side Validation

Server side validation must always be setup. The control must have a property that returns either a boolean or integer value
indicating its selection state. If it returns any other value, you will have to subclass
PeterBlum.DES.BaseRequiredSelectionControl and override its HasSelection() method.

The control has a property that returns a boolean value indicating its selection state

If the control has a boolean property that reflects the selection state, assign that property name to the
RequiredSelectionControl.HasSelectionPropertyName property. (It is case sensitive.)

The property is expected to return true when it has a selection.

<Property name="HasSelectionPropertyName" value="IsSelected" />

If it does the opposite – returns false when it has a selection, assign RequiredSelectionControl.InvertHasSelectionResult to
true.

<Property name="HasSelectionPropertyName" value="IsNotSelected" />
<Property name="InvertHasSelectionResult" value="true" />

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 86 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

The control has a property that returns a integer value indicating its selection state

If the control has a integer property that reflects the selection state, assign that property name to the
RequiredSelectionControl.HasSelectionPropertyName property. (It is case sensitive.)

The property is expected to return 0 when it has NO selection. All other values indicates it has a selection.

<Property name="HasSelectionPropertyName" value="SelectedIndex" />

If it uses something other than 0 when it has NO selection, assign RequiredSelectionControl.HasNoSelectionValue to the
value for no selection.

<Property name="HasSelectionPropertyName" value="SelectedIndex" />
<Property name="HasNoSelectionValue" value="-1" />

All other cases

You must subclass PeterBlum.DES.BaseRequiredSelectionControl and override its HasSelection()
method. Then you add an instance of your class using the PeterBlum.DES.ConfigFile.ConfigFileLoaded event, as
described in the “Global Settings Editor and custom.DES.config file” section of the General Features Guide.

1. Create a subclass of PeterBlum.DES.BaseRequiredSelectionControl with the HasSelection() method defined like this:

[C#]

public class MyRequiredSelectionControl : BaseRequiredSelectionControl
{
 public RequiredSelectionControl() : base()
 {
 }
 public RequiredSelectionControl(Type pControlType) : base(pControlType)
 {
 }
 public RequiredSelectionControl(Type pControlType,
 string pSelectionFunctionName)
 : base(pControlType, pSelectionFunctionName)
 {
 }

 public override bool HasSelection(Control pControlToEvaluate)
 {
 //!!!PENDING
 }
}

[VB]

Public Class MyRequiredSelectionControl
 Inherits BaseRequiredSelectionControl
 Public RequiredSelectionControl() :MyBase()
 Public RequiredSelectionControl(ByVal pControlType As Type) _
 :MyBase(pControlType)
 Public RequiredSelectionControl(ByVal pControlType As Type, _
 ByVal pSelectionFunctionName As String)
 :MyBase(pControlType ,pSelectionFunctionName)

 Public Overrides Function HasSelection(_
 ByVal pControlToEvaluate As Control) As Boolean
 '!!!PENDING
 End Function
End Class

2. Implement the HasSelection() method. It must return true if there is a selection and false if not.

3. If your control can support client-side validation, set up the selection function. See “Setting up Client Side Validation”.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 87 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

4. In the PeterBlum.DES.ConfigFile.ConfigFileLoaded event, create your BaseRequiredSelectionControl subclass,
passing the control type and client-side Selection Function Name as parameters. Add it to
PeterBlum.DES.Globals.RequiredSelectionControls through its Add() method.

[C#]

protected void MyConfigFilesLoaded(PeterBlum.DES.ConfigFile pConfigFile)
{
 MyRequiredSelectionControl vRSC = new MyRequiredSelectionControl(
 typeof(MyControl), "HasSelection");
 PeterBlum.DES.Globals.RequiredSelectionControls.Add(vRSC);
}

[VB]

Protected Sub MyConfigFilesLoaded(_
 ByVal pConfigFile As PeterBlum.DES.ConfigFile)

 Dim vRSC As MyRequiredSelectionControl = New MyRequiredSelectionControl(_
 Typeof MyControl, "HasSelection")
 PeterBlum.DES.Globals.RequiredSelectionControls.Add(vRSC)
End Sub

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 88 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Condition Properties for RequiredSelectionValidator
Each Validator control includes a Condition with several properties that require setup. The Properties Editor shows them in
the “Condition” section.

The following list are properties specific to this Condition:

 ControlIDToEvaluate, ControlToEvaluate, and NotCondition – See “Properties Common to most Conditions”.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 89 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

CharacterValidator
Condition CharacterCondition

License Required Peter’s More Validators

Supported controls All that declare the ValidationPropertyAttribute including TextBox, ListBox, DropDownList

Can evaluate blank fields Yes when the IgnoreBlankText property is false

The CharacterValidator determines if your textbox has text where every character is in a character set that you specify. It
doesn’t define a pattern or order to the characters. Patterns, like phone numbers or addresses, need the power of the
RegexValidator. Some examples where a limited character set applies:

 Passwords – perhaps you only allow letters, digits, space and underscore
 Credit card numbers – only allow digits
 Person’s first name – only allow letters

When used with the FilteredTextBox, it automatically uses the FilteredTextBox’s properties to define the character set. It
ignores properties that define the character set on itself.

Click on any of these topics to jump to them:

 Adding Validation to a WebForm

 Using This Condition

 Condition Properties for CharacterValidator

 Properties for Error Messages

 ErrorFormatters: Customizing the Appearance of the Error Message

 Other Validator Properties that Customize the Appearance

 Changing When the Validator is Evaluated

 Other Properties

 Additional Validation Topics

Using This Condition
Specify the control to evaluate with the ControlIDToEvaluate property. Use these Boolean properties to determine the set of
characters: LettersUppercase, LettersLowercase, DiacriticLetters, Digits, Space, Enter, Punctuation,
CurrencySymbols, EnclosureSymbols, MathSymbols, and VariousSymbols. For any other characters or to define a subset
of the predefined character definitions, use the OtherCharacters property to list the characters you want. If you want all
characters except a specific character set, define the character set using the preceding properties and set the property Exclude
to true.

Example

Limit TextBox1 to only letters, digits, and the underscore character.

<des:CharacterValidator id="CharV1" runat="server"
 ErrorMessage="Limit your entry to letters, digits, and underscore."
 ControlIDToEvaluate="TextBox1"
 LettersUppercase="true" LettersLowercase="true"
 Digits="true" OtherCharacters="_">
</des:CharacterValidator>

http://msdn2.microsoft.com/en-us/library/system.web.ui.validationpropertyattribute.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 90 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Condition Properties for CharacterValidator
Each Validator control includes a Condition with several properties that require setup. The Properties Editor shows them in
the “Condition” section.

Note: When used with the FilteredTextBox, this Condition automatically uses the FilteredTextBox’s properties to define the
character set. The following properties are ignored: LettersLowercase, LettersUppercase, Digits, Space, Enter,
OtherCharacters, and Exclude.

The following list are properties specific to this Condition:

 ControlIDToEvaluate, ControlToEvaluate, and Trim – See “Properties Common to most Conditions”.

 LettersLowercase (Boolean) – When true, all lowercase letters are part of the characterset. When false, no
lowercase letters are included unless they are specified in the OtherCharacters property. It defaults to false.

 LettersUppercase (Boolean) – When true, all uppercase letters are part of the characterset. When false, no
uppercase letters are included unless they are specified in the OtherCharacters property. It defaults to false.

 DiacriticLetters (Boolean) – When true, diacritic (accented) letters are part of the characterset. There are two groups
of diacritics available to users: ASCII and Unicode. They are both supported.

When false, no diacritic letters are included unless they are specified in the OtherCharacters property. It defaults to
false.

ASCII Diacritic Letters Supported
âäàåáÄÅ çÇ éêëèÉ æÆ ƒ ïîìí ñÑ ôöòóÖ üûùúÜ ÿ

These letters are found in the ASCII character set between ASCII 128 and 165. Users on Windows type ALT+1## to
insert them into the textbox. Users on MacOSX use Edit; Special Characters to open the Character Palette. These
characters are in the Glyph View.

Unicode Diacritic Letters Supported
àáâãäåÀÁÂÃÄÅ æÆ çÇ èéêëÈÉÊË ìíîïÌÍÎÏ ñÑ òóôõöøÒÓÔÕÖØ ùúûüÙÚÛÜ ýÿÝ ðÐ Þþ ß

These letters are found in Unicode’s Latin-1 Supplement character set between 0192 (Hex 00C0) and 0255 (Hex 00FF).
Users on Windows type ALT+0### to insert them into the textbox. Users on MacOSX use Edit; Special Characters to
open the Character Palette. These characters are in the Unicode View.

 Digits (Boolean) – When true, all digits are part of the characterset. When false, no digits are included unless they
are specified in the OtherCharacters property. It defaults to false.

 Space (Boolean) – When true, the Space character is part of the characterset. It defaults to false. The Trim property
automatically strips leading and trailing spaces when true. It will not affect embedded spaces.

 Enter (Boolean) – When true, the Enter character is part of the characterset. It defaults to false.

 Punctuation (Boolean) – When true, punctuation characters are part of the characterset. When false, no punctuation
characters are included unless they are specified in the OtherCharacters property. It defaults to false.

Punctuation Characters Supported
. , ! ? ' " - ; :

(period, comma, exclamation point, question mark, single quote, double quote, dash, semicolon, colon)

ALERT: Hackers use the single quote and dash for SQL Injection attacks. If you permit these characters, see the
DES: Peter’s Input Security User’s Guide for defensive measures.

 CurrencySymbols (Boolean) – When true, currency symbol characters are part of the characterset. When false, no
currency symbol characters are included unless they are specified in the OtherCharacters property. It defaults to
false.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 91 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Currency Symbols Supported
$ ¢ ¥ ¥ £ ¤

(US Dollar, cents – UNICODE 0162, Yen – ASCII 157, Yen – UNICODE 0164, Pounds – UNICODE 0163)

 EnclosureSymbols (Boolean) – When true, characters that enclose (bracket) text are part of the characterset. When
false, no enclosure characters are included unless they are specified in the OtherCharacters property. It defaults to
false.

Enclosure Symbols Supported
() [] { }

 MathSymbols (Boolean) – When true, math symbol characters are part of the characterset. When false, no math
symbol characters are included unless they are specified in the OtherCharacters property. It defaults to false.

Math Symbols Supported
+ - * / = () < > . % ± × ÷ ± ÷

(plus, minus, asterisk, equals, left paren, right paren, less than, greater than, period, percent, plus/minus – UNICODE
0177, multiply – UNICODE 0215, divide – UNICODE - 0247, divide – ASCII 246)

ALERT: Hackers use the dash for SQL Injection attacks. If you permit the dash, see the DES: Peter’s Input Security
User’s Guide for defensive measures.

 VariousSymbols (Boolean) – When true, various symbol characters shown below are part of the characterset. When
false, none of the characters shown below are included unless they are specified in the OtherCharacters property. It
defaults to false.

Various Symbols Supported
_ @ # ^ & * ~ ¿ ¿ ¡ \ / | ¦ § © ® ` ´

(Underscore, at, circumflex, ampersand, asterisk, tilde, inverted question mark – ASCII 168, inverted question mark –
UNICODE 0191, inverted exclamation point – UNICODE 0161, left slash, right slash, pipe, broken bar, section sign,
copyright, registered, grave accent, acute accent)

 OtherCharacters (string) – Enter each unique character that you want in the character. Don’t enter any characters that
are already covered by the previously stated properties. Suppose you want to support only “n”, “x”, and the underscore
character here. You would enter “nx_”. Suppose you want some common punctuation characters. You would enter
“.!,?;:”.

 Exclude (Boolean) – When true, the character set defined in the above properties is excluded; all other characters are
permitted. When false, the character set defined above are the only characters permitted. It defaults to false.

 IgnoreBlankText (Boolean) – Determines how blank text is evaluated. When true, the condition cannot be evaluated.
When false, the condition evaluates as failed (reports an error). It defaults to true.

 GlobalStorageName (string) – Use this property to improve speed. This Condition uses a .net Regex object to evaluate
text. It takes time for a .net Regex object to convert a regular expression into its internal format. With this setting that
will only happen once per application start, and it is further optimized by using the “Compiled” option on the .net Regex
object.

Do not use this when the characterset will change. It should only be used when the characterset remains identical while
the application runs.

You define a unique name for this set of rules and assign it to GlobalStorageName. For example, “PersonsName” or
“VAL_PhoneNumber”.

If you have several CharacterValidators that use identical rules, use the same value of GlobalStorageName so that they
all share the same .net Regex object. This further improves your application’s speed.

When used, the .net Regex object is stored in the Application collection. Application[GlobalStorageName] is
assigned the string containing the regular expression. Application[GlobalStorageName + "_RE"] is

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttpapplicationstateclasstopic.asp�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 92 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

assigned the Regex object. So give this a name that will not conflict with anything else that you place into the
Application collection.

WARNING: Several other Validators offer the GlobalStorageName property. Never use the same value amongst
different types of Validators.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 93 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

CompareToStringsValidator
Condition CompareToStringsCondition

License Required Peter’s More Validators

Supported controls All that declare the ValidationPropertyAttribute including TextBox, ListBox, DropDownList

Can evaluate blank fields Yes when the IgnoreBlankText property is false

The CompareToStringsValidator determines if your textbox has text that matches to any item in a list of strings that you
supply. For example, you can define a list of UserNames to compare to the textbox. Note: This control has to copy the list of
the strings to the client-side if you allow the control to validate on the client-side. When you supply a list of user names or
passwords, you should set EnableClientScript to false to force server-side evaluation or use OverrideClientSideEvaluation
to provide a lightweight client-side interface.

This control supports retrieving data from a data source such as a DataSet, DataTable or a
System.Collections.IEnumerable collection, in the same way you populate a ListBox or DropList.

You can establish a rule where the text can match to a string in the list in the following ways: exact match, contained within a
string, start the string, or end the string.

Note: This Validator uses a Regular Expression to evaluate the list of strings. In fact, it is subclassed from RegexValidator
and RegexCondition.

Note: This Validator is not meant for long lists of strings, especially when you validate on the client side. It has to copy all of
the strings to the client-side, which slows transmission times. There are likely limits to the size of a regular expression
pattern. Test your page against the data to be sure this Validator will work for you.

Click on any of these topics to jump to them:

 Adding Validation to a WebForm

 Using This Condition

 Condition Properties for CompareToStringsValidator

 Properties for Error Messages

 ErrorFormatters: Customizing the Appearance of the Error Message

 Other Validator Properties that Customize the Appearance

 Changing When the Validator is Evaluated

 Other Properties

 Additional Validation Topics

http://msdn2.microsoft.com/en-us/library/system.web.ui.validationpropertyattribute.aspx�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemCollectionsIEnumerableClassTopic.asp�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 94 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Using This Condition
Specify the control to evaluate with the ControlIDToEvaluate property. The data comes from three properties that are
familiar if you have used databinding on ListBoxes or DataGrids: DataSource, DataMember, and DataTextField.
However, you don’t need to call the DataBind() method unless you use databinding notation in the ASP.NET text (as
shown below.) Alternatively, you can add strings to the Items property.

This example uses the DataSource property.

<des:CompareToStringsValidator id=CTSV1 runat="server"
 ErrorMessage="Enter a category" ControlIDToEvaluate="TextBox1"
 DataMember="Categories" DataSource="<%# dataSet1 %>"
 DataTextField="CategoryName">
</des:CompareToStringsValidator>

This example uses the Items property.

<des:CompareToStringsValidator id=CTSV2 runat="server"
 ErrorMessage="Enter a category" ControlIDToEvaluate="TextBox1" >
<Items>
 <des:CompareToStringsItem Value="hardware" />
 <des:CompareToStringsItem Value="software" />
</Items>
</des:CompareToStringsValidator>

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 95 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Condition Properties for CompareToStringsValidator
Each Validator control includes a Condition with several properties that require setup. The Properties Editor shows them in
the “Condition” section.

The following list are properties specific to this Condition:

 ControlIDToEvaluate, ControlToEvaluate, Trim, and NotCondition – See “Properties Common to most
Conditions”.

 Items (PeterBlum.DES.CompareToStringsCollection) – This collection contains the strings which will be compared
against the value of the textbox. Add PeterBlum.DES.CompareToStringsItem objects. These objects have one
property, Value, where you assign the string.

You can also populate this collection using a data source defined with the DataSource, DataMember, and
DataTextField properties.

Entering Items in ASP.NET Declarative Syntax

Strings are defined in PeterBlum.DES.CompareToStringsItem objects.

Define strings like this:

<Items>
 <des:CompareToStringsItem Value="string1" />
 <des:CompareToStringsItem Value="string2" />
</Items>

Entering Items Programmatically

Use the Add() method on the Items property. Pass a string or PeterBlum.DES.CompareToStringsItem
object.

[C#]

CompareToStringValidator1.Items.Add("string1");

[VB]

CompareToStringValidator1.Items.Add("string1")

 CaseInsensitive (Boolean) – When true, the regular expression parser will perform a case insensitive match. When
false, it will perform a case sensitive match. It defaults to true.

 MatchTextRule (enum PeterBlum.DES.MatchTextRule) – Determines how the value of the text field is compared to
each string in the list. This enumerated type has these values:

o Exact – The value must exactly match a string. This is the default.

o Contains – The value must be somewhere within a string.

o StartsWith – The value must appear at the start of a string.

o EndsWith – The value must appear at the end of a string.

 IgnoreBlankText (Boolean) – Determines how blank text is evaluated. When true, the condition cannot be evaluated.
When false, the condition evaluates as failed (reports an error). It defaults to true.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 96 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 DataSource (object) – You can populate the Items property from a data source using this property. Your data source can
be a DataSet, DataTable, or a collection that implements System.Collections.IEnumerable such as an
ArrayList. If you use the design time features of the Properties Editor, you can select a DataSet object already on your
design mode surface with the “(DataBindings)” property.

o When using a DataSet, also set the DataMember property to the name of the table that contains the column you
are using. You can leave DataMember blank only if DataSet only has one table. Always set DataTextField to
the name of the column that you are using.

o When using a DataTable, set the DataTextField property to the name of the column that you are using.

o When using a collection that implements IEnumerable, you can populate it with strings or any object class that
has a string property with the desired data. If you use an object that has a string property, give the name of that
property in the DataTextField property.

Note: If you set up the DataSource property in the Properties Editor, you must call the DataBind() method on the
Validator in your Page_Load() method. You do not need to call DataBind() when you assign this property
programmatically.

 DataMember (string) – When using the DataSource property with a DataSet, assign the name of the table within that
DataSet that contains the column you are using. It defaults to “”.

 DataTextField (string) – When using the DataSource property, assign this to the name of the column or property that
contains the data. When it is a DataSet or DataTable, this should be the name of the column within a table. When it is an
IEnumerable collection, it should be the name of a property on an object. When it is a collection that only contains
strings, leave this blank. It defaults to “”.

 GlobalStorageName (string) – Use this property to improve speed. This Condition uses a .net Regex object to evaluate
text. It takes time for a .net Regex object to convert a regular expression into its internal format. With this setting that
will only happen once per application start, and it is further optimized by using the “Compiled” option on the Regex
object.

Do not use this when the list of strings will change. It should only be used when the list of strings remains identical while
the application runs.

You define a unique name for this expression and assign it to GlobalStorageName. For example, “ReviewStatusNames”
or “123abc”.

If you have several CompareToStringValidators that use identical rules, use the same value of GlobalStorageName so
that they all share the same Regex object. This further improves your application’s speed.

When used, the .net Regex object is stored in the Application collection. Application[GlobalStorageName] is
assigned the string containing the regular expression. Application[GlobalStorageName + "_RE"] is
assigned the Regex object. So give this a name that will not conflict with anything else that you place into the
Application collection.

WARNING: Several other Validators offer the GlobalStorageName property. Never use the same value amongst
different types of Validators.

 PrepareProperties (delegate PeterBlum.DES.RegexPrepareProperties) – When using the GlobalStorageName and you
run time consuming code to create the list of strings, put your time consuming code in a method assigned to
PrepareProperties. Your code will only be called once and its results will be cached. This increases the application
speed by avoiding that time consuming code when it’s not needed.

This is recommended when you use the DataSource property as database queries are time consuming.

Your method will update the properties of the CompareToStringsCondition, the Condition object of the
CompareToStringsValidator. The CompareToStringsCondition and CompareToStringsValidator share the same
properties described throughout this section. Normally you assign the Items or DataSource property. However, any of
the properties can be changed.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemCollectionsIEnumerableClassTopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttpapplicationstateclasstopic.asp�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 97 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Here is the format of a method assigned to PrepareProperties.

[C#]

public void MethodName(PeterBlum.DES.RegexCondition pCondition)

[VB]

Public Sub MethodName(ByVal pCondition As PeterBlum.DES.RegexCondition)

Parameters

pCondition

The Condition class for the CompareToStringsValidator. It is declared as RegexCondition, which is a base class
to the CompareToStringsCondition. So typecast pCondition to
PeterBlum.DES.CompareToStringsCondition to access its properties. CompareToStringsCondition
has the same properties as shown in this section.

[C#]

MyValidator.PrepareProperties =
 new PeterBlum.DES.RegexPrepareProperties(methodname);

[VB]

MyValidator.PrepareProperties = _
 New PeterBlum.DES.RegexPrepareProperties(AddressOf methodname)

Example

Assigns a DataSet to the DataSource property after populating it. The sqlDataAdapter1 is a SQLDataAdapter
already on the page and fully attached to a SqlConnection and SqlCommand object. dataSet1 is a DataSet
already on the page. Assume that they are all objects on this page generated by Visual Studio.net. The DataMember and
DataTextName properties retain their previously assigned values in this example.

[C#]

public void ApplyExpression(PeterBlum.DES.RegexCondition pRegexCondition)
{
 sqlDataAdapter1.Fill(dataSet1);
 ((PeterBlum.DES.CompareToStringsCondition)pCondition).DataSource =
 dataSet1;
}

[VB]

Public Sub ApplyExpression(ByVal pRegexCondition As _
 PeterBlum.DES.RegexCondition)
 sqlDataAdapter1.Fill(dataSet1)
 CType(pCondition, PeterBlum.DES.CompareToStringsCondition).DataSource = _
 dataSet1
End Sub

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 98 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

WordCountValidator
Condition WordCountCondition

License Required Peter’s More Validators

Supported controls TextBox, HtmlInputText

Can evaluate blank fields Yes

The WordCountValidator evaluates the number of words in a textbox against a minimum and/or maximum. It can optionally
evaluate the total words in two textboxes.

A “word” is defined as any unbroken string of these characters: A-Z, a-z, 0-9, underscore (_) and single quote ('). All other
characters are word separators.

DES provides the TextCounter control in the Peter’s Interactive Pages module. It can compliment the TextLengthValidator.

Click on any of these topics to jump to them:

 Adding Validation to a WebForm

 Using This Condition

 Condition Properties for WordCountValidator

 Properties for Error Messages

 ErrorFormatters: Customizing the Appearance of the Error Message

 Other Validator Properties that Customize the Appearance

 Changing When the Validator is Evaluated

 Other Properties

 Additional Validation Topics

Using This Condition
Specify the control to evaluate with the ControlIDToEvaluate property; if you want to evaluate the total of two controls,
specify the second in SecondControlIDToEvaluate.

The Minimum and Maximum properties determine the limits when they are not 0. When using the Minimum property, if
you do not want errors reported for an empty textbox, set IgnoreBlankText to true.

The Validator’s ErrorMessage property supports several tokens. “{COUNT}” is the number of words entered.
“{EXCEEDS}” is the number of words exceeding the minimum or maximum. “{EXCEEDS:word:words}” uses the word
“word” when {EXCEEDS} is 1; otherwise it uses the word “words”. “{MINIMUM}” is replaced by the property Minimum.
“{MAXIMUM}” is replaced by the property Maximum. See “Tokens in Error Messages” for details on tokens.

Example

<des:WordCountValidator id="WordCountValidator1" runat="server"
 ControlIDToEvaluate="TextBox1" Maximum="15"
 ErrorMessage="Please limit your entry to {MAXIMUM} words.
 You have entered {COUNT} {COUNT:word:words}.">
</des:WordCountValidator>

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 99 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Condition Properties for WordCountValidator
Each Validator control includes a Condition with several properties that require setup. The Properties Editor shows them in
the “Condition” section.

The following list are properties specific to this Condition:

 ControlIDToEvaluate, ControlToEvaluate, ReportErrorsAfter, Trim, and NotCondition – See “Properties
Common to most Conditions”.

 Minimum (Integer) – The minimum number of words in the textbox. When it is 0, there is no minimum. It defaults to 0.

 Maximum (Integer) – The maximum number of words in the textbox. When it is 0, there is no maximum. It defaults to
0.

 IgnoreBlankText (Boolean) – By default, when you use the Minimum property, a blank textbox will be reported as an
error. If you do not require text in the textbox, set IgnoreBlankText to true. It defaults to false.

 SecondControlIDToEvaluate (string) – Identifies a second TextBox control. When assigned, the total words in the two
textboxes are added together before comparing to the minimum and maximum. Leave it blank if you only need to
evaluate one TextBox. This property takes the ID of the control.

An exception is thrown at runtime when this is unknown, not in the same or ancestor naming container, is Visible=false,
or a control class that is not supported.

 SecondControlToEvaluate (System.Web.UI.Control) – An alternative to SecondControlIDToEvaluate. Use it when
the TextBox control is not in the same or ancestor naming container. It must be assigned programmatically. For example,
if you have a Validator instance in the variable “Val2” and a textbox instance in the variable “TextBox2”, write code like
this: Val2.SecondControlToEvaluate = TextBox2.

When programmatically assigning properties to a Validator control or Condition class, if you have access to the control
object that will be evaluated, it is better to assign it here than assign its ID to the SecondControlIDToEvaluate property
because DES operates faster using SecondControlToEvaluate.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 100 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

DifferenceValidator
Condition DifferenceCondition

License Required Peter’s More Validators

Supported controls All that declare the ValidationPropertyAttribute including TextBox, ListBox, DropDownList

Can evaluate blank fields No (Use RequiredTextValidator or MultipleRequiredControlsValidator on both fields)

The DifferenceValidator evaluates two textbox fields to determine if the difference between their two values is a certain
number apart from each other. You specify the data type, a value to compare to the difference and the operator.

The data type can be any of these:

 Integer – For example, they must be at least a value of 5 apart
 Double – For example, they must be within 1.5 of each other.
 Currency – For example, they must be exactly $10.00 difference
 Date – For example, test that two dates are less than 60 days apart.
 Time and Duration – The number of seconds between the two fields.
 DateTime – The number of seconds between two pairs of Date and TimeOfDay TextBoxes.

Note: Integer, Double, and Currency offer several forms of data types such as Positive Integer and Currency with
Symbol. All of these are supported.

Note: Time, Duration, and DateTime only evaluate controls found in the Peter’s Date and Time module.

The DifferenceCondition first determines the numeric value of the two text items. (Dates have a numeric value too; the
number of days.) Then it subtracts them and keeps the absolute value of the result. It uses the operator you select (less than,
equal, etc.) and compares the difference to the value you supply.

Click on any of these topics to jump to them:

 Adding Validation to a WebForm

 Using This Condition

 Condition Properties for DifferenceValidator

 Properties for Error Messages

 ErrorFormatters: Customizing the Appearance of the Error Message

 Other Validator Properties that Customize the Appearance

 Changing When the Validator is Evaluated

 Other Properties

 Additional Validation Topics

http://msdn2.microsoft.com/en-us/library/system.web.ui.validationpropertyattribute.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 101 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Using This Condition
Specify the two controls to evaluate with the ControlIDToEvaluate and SecondControlIDToEvaluate properties. The
DataType property specifies the data type. Data types like date and currency will follow culture specific formatting set on
the current web page or overridden on PeterBlum.DES.Globals.Page.CultureInfo.

Use the Operator property for the operator and the DifferenceValue property for the numeric difference between the two
fields.

This Validator cannot evaluate when either control’s text is blank or it cannot be converted to the data type. Use the
RequiredTextValidator and DataTypeCheckValidator to handle each of those cases or combine their conditions within the
MultiConditionValidator to provide one error message.

The Validator’s ErrorMessage property supports several tokens. “{DIFFERENCEVALUE} is replaced by the property
DifferenceValue. “{DIFFRESULT}” is replaced by the calculated difference. See “Tokens in Error Messages” for details on
tokens.

Example

<des:DifferenceValidator id="DifferenceValidator1" runat="server"
 ControlIDToEvaluate="TextBox1" SecondControlIDToEvaluate="TextBox2"
 DataType="Date" Operator="LessThanEqual" DifferenceValue="60"
 ErrorMessage="Keep the dates within {DIFFERENCEVALUE} days of each other.
 They are {DIFFRESULT} days apart.">
</des:DifferenceValidator>

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 102 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Condition Properties for DifferenceValidator
Each Validator control includes a Condition with several properties that require setup. The Properties Editor shows them in
the “Condition” section.

The following list are properties specific to this Condition:

 ControlIDToEvaluate, ControlToEvaluate, ReportErrorsAfter, Trim, and NotCondition – See “Properties
Common to most Conditions”.

 SecondControlIDToEvaluate (string) – Identifies the second data entry control that will be evaluated. This property
takes the ID of the control. When a Validator control or Condition class includes this property, it must be assigned unless
you are using the SecondControlToEvaluate property, the CustomValidator or CustomCondition.

An exception is thrown at runtime when this is blank, unknown, not in the same or ancestor naming container, is
Visible=false, or a control class that is not supported.

 SecondControlToEvaluate (System.Web.UI.Control) – An alternative to SecondControlIDToEvaluate. Use it when
the data entry control is not in the same or ancestor naming container. It must be assigned programmatically. For
example, if you have a Validator instance in the variable “Val2” and a textbox instance in the variable “TextBox2”, write
code like this: Val2.ControlToEvaluate = TextBox2.

When programmatically assigning properties to a Validator control or Condition class, if you have access to the control
object that will be evaluated, it is better to assign it here than assign its ID to the SecondControlIDToEvaluate property
because DES operates faster using SecondControlToEvaluate.

 DataType (string) – The name of the data type that this condition evaluates. If the user does not enter a string that is
compatible with this data type, the condition will not evaluate. (So use a DataTypeCheckValidator to detect errors in the
format.) It defaults to “String”. You can change it to any of these values: “String-Case Insensitive”, “Integer”, “Double”,
“Date”, “Currency”, “Currency with Symbol”, “Positive Integer”, “Positive Double”, “Positive Currency”, and “Positive
Currency with Symbol”.

Numeric, currency, and date types will follow culture specific formatting set on the current web page or overridden on
PeterBlum.DES.Globals.Page.CultureInfo. Integers are represented by signed 32 bit integer values. Any larger integer
value than 2,147,483,648 will not be evaluated.

Dates are compared as a number of days between the two fields. For example, the difference between January 1, 2003
and January 2, 2003 is one day. Times are compared as a number of seconds.

Do not use String or String-Case Insensitive. They are not supported.

When using any of the numeric, date or time textboxes from the Peter’s TextBoxes or Peter’s Date and Time modules,
this property is almost always ignored. The textbox will tell the validator exactly how it needs to be configured.
DataType is only used when evaluating a TimeOfDayTextBox with the DateTextBoxControlID assigned. In that case,
set DataType to DateTime or Time to select whether to validate both DateTextBox+TimeOfDayTextBox together or
just the TimeOfDayTextBox alone.

You can programmatically define new data types. See the Developer’s Guide for details.

 DifferenceValue (Double) – The value to be compared to the difference between the two values. (The difference is
always an absolute value.) It must be 0 or higher. (When set to 0, you have effectively made a
CompareTwoFieldsCondition.)

This value is the right side of the expression. The calculated difference is on the left side.

 Operator (enum PeterBlum.DES.ConditionOperator) – Determines how the calculated difference is compared to
DifferenceValue. The enumerated type PeterBlum.DES.ConditionOperator has the following values:

o Equal (This is the default.) abs(ControlIDToEvaluate – SecondControlIDToEvaluate) = DifferenceValue

o NotEqual abs(ControlIDToEvaluate – SecondControlIDToEvaluate) <> DifferenceValue

o GreaterThan abs(ControlIDToEvaluate – SecondControlIDToEvaluate) > DifferenceValue

o GreaterThanEqual abs(ControlIDToEvaluate – SecondControlIDToEvaluate) >= DifferenceValue

o LessThan abs(ControlIDToEvaluate – SecondControlIDToEvaluate) < DifferenceValue

o LessThanEqual abs(ControlIDToEvaluate – SecondControlIDToEvaluate) <= DifferenceValue

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 103 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

CountSelectionsValidator
Condition CountSelectionsCondition

License Required Peter’s More Validators

Supported controls CheckBoxList, ListBox

Can evaluate blank fields Yes

The CountSelectionsValidator evaluates CheckBoxLists and multi-selection ListBoxes to determine how many items are
selected. You can establish a minimum and maximum. Optionally you can assign it to a second CheckBoxList or multi-
selection ListBox to compare to the combined total selection to the range.

Click on any of these topics to jump to them:

 Adding Validation to a WebForm

 Using This Condition

 Condition Properties for CountSelectionsValidator

 Properties for Error Messages

 ErrorFormatters: Customizing the Appearance of the Error Message

 Other Validator Properties that Customize the Appearance

 Changing When the Validator is Evaluated

 Other Properties

 Additional Validation Topics

Using This Condition
Specify the control to evaluate with the ControlIDToEvaluate property. If you want to evaluate the total of two controls,
specify the second in SecondControlIDToEvaluate.

The Minimum and Maximum properties determine the limits when they are not 0.

This Validator’s ErrorMessage property supports several tokens. “{COUNT}” is the number of selected items.
“{MINIMUM}” is replaced by the property Minimum. “{MAXIMUM}” is replaced by the property Maximum. See
“Tokens in Error Messages” for details on tokens.

Example

<des:CountSelectionsValidator id="CountSelectionsValidator1" runat="server"
 ControlIDToEvaluate="CheckListBox1" Maximum="2"
 ErrorMessage="Please pick no more than {MAXIMUM} colors.">
</des:CountSelectionsValidator>

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 104 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Condition Properties for CountSelectionsValidator
Each Validator control includes a Condition with several properties that require setup. The Properties Editor shows them in
the “Condition” section.

The following list are properties specific to this Condition:

 ControlIDToEvaluate, ControlToEvaluate, ReportErrorsAfter, and NotCondition – See “Properties Common to
most Conditions”.

 Minimum (Integer) – The minimum number of selected items in the CheckBoxList or multi-selection ListBox. When it
is 0, there is no minimum. It defaults to 0.

 Maximum (Integer) – The maximum number of selected items in the CheckBoxList or multi-selection ListBox. It must
be greater or equal to 1. It defaults to 99999.

 SecondControlIDToEvaluate (string) – Identifies a second CheckBoxList or multi-selection ListBox control. When
assigned, the total selections in the two controls are added together before comparing to the minimum and maximum.
Leave it blank if you only need to evaluate one control. This property takes the ID of the control.

An exception is thrown at runtime when this is unknown, a different control class than ControlIDToEvaluate not in the
same or ancestor naming container, is Visible = false, or a control class that is not supported.

 SecondControlToEvaluate (System.Web.UI.Control) – An alternative to SecondControlIDToEvaluate. Use it when
the control is not in the same or ancestor naming container. It must be assigned programmatically. For example, if you
have a Validator instance in the variable “Val2” and a CheckBoxList instance in the variable “CheckBoxList2”, write
code like this: Val2.SecondControlToEvaluate = CheckBoxList2.

When programmatically assigning properties to a Validator control or Condition class, if you have access to the control
object that will be evaluated, it is better to assign it here than assign its ID to the SecondControlIDToEvaluate property
because DES operates faster using SecondControlToEvaluate.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 105 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

DuplicateEntryValidator
Condition DuplicateEntryCondition

License Required Peter’s More Validators

Supported controls TextBox, ListBox, DropDownList

Can evaluate blank fields Yes

The DuplicateEntryValidator evaluates three or more data entry controls to determine if there are any duplicate entries. You
can compare textual values in any of the controls supported: TextBox, ListBox, and DropDownList. For ListBox and
DropDownList, the textual value is the Value property associated with selected item. If you are only using ListBoxes or
DropDownLists, you can compare the selected indexes to confirm that there are no duplicates.

Click on any of these topics to jump to them:

 Adding Validation to a WebForm

 Using This Condition

 Condition Properties for DuplicateEntryValidator

 Properties for Error Messages

 ErrorFormatters: Customizing the Appearance of the Error Message

 Other Validator Properties that Customize the Appearance

 Changing When the Validator is Evaluated

 Other Properties

 Additional Validation Topics

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 106 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Using This Condition
Specify the data entry controls within the ControlsToMatch property. It is a collection that holds
PeterBlum.DES.LabeledControl objects, where you identify the control and optionally its label.

Use the MatchMode property to specify a rule for matching: exact match, case insensitive match, or use the SelectedIndex
property (only for ListBox and DropDropList controls).

Use the IgnoreUnassigned property to ignore blank controls.

The label is used in the ErrorMessage when you include the tokens “{LABEL1}” and “{LABEL2}”. They help lead the
user to a pair of fields found with duplicate values. Your ErrorMessage can also contain the token “{TEXTVALUE}” to
show the value found to be duplicated. See “Tokens in Error Messages” for details on tokens.

Example

<des:DuplicateEntryValidator id=DuplicateEntryValidator1 runat="server"
 IgnoreBlankText="True" MatchMode="CaseInsensitive"
 ErrorMessage='The value "{TEXTVALUE}" is shown in both {LABEL1} and
{LABEL2}. Only unique values are accepted.'>
<ControlsToMatch>
 <des:LabeledControl ControlID="TextBox1" Label-LabelControlID="Label1">
 </des:LabeledControl>
 <des:LabeledControl ControlID="TextBox2" Label-LabelControlID="Label2">
 </des:LabeledControl>
 <des:LabeledControl ControlID="TextBox3" Label-Text="Field 3">
 </des:LabeledControl>
 <des:LabeledControl ControlID="TextBox4" Label-Text="Field 4">
 </des:LabeledControl>
</ControlsToMatch>
</des:DuplicateEntryValidator>

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 107 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Condition Properties for DuplicateEntryValidator
Each Validator control includes a Condition with several properties that require setup. The Properties Editor shows them in
the “Condition” section.

The following list are properties specific to this Condition:

 ReportErrorsAfter, Trim and NotCondition – See “Properties Common to most Conditions”.

 ControlsToMatch (PeterBlum.DES.LabeledControlsCollection) – A list identifying each data entry control and
optionally, its label. Add PeterBlum.DES.LabeledControl objects to this collection.

You can only specify TextBox, ListBox, and DropDownList controls. If the MatchMode property is set to
SelectedIndex, do not add TextBoxes.

The PeterBlum.DES.LabeledControl object has these properties:

o ControlID (string) – The ID of the data entry control. The control must be in the same or a parent naming
container as the DuplicateEntryValidator. Alternatively, use the ControlInstance property.

o ControlInstance (System.Web.UI.Control) – An object reference to the data entry control. It is an alternative to
ControlID that allows a control from any naming container. If you programmatically set up LabeledControl
objects, it is better to assign this property as DES processes it faster.

o Label (PeterBlum.DES.LabelText) – Specifies an optional label associated with the data entry control. It is used
in the ErrorMessage tokens “{LABEL1}” and “{LABEL2}”. So set it when using those tokens. You can
specify a Label control in its LabelControlID or LabelControl properties or enter text for the label in its Text
property. See “Properties for Error Messages” for details on the properties of the LabelText class.

Adding to ControlsToMatch In Design Mode

The Properties Editor for the ControlsToMatch property provides a window where you can define LabeledControl
objects.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 108 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Adding to ControlsToMatch with ASP.NET Declarative Syntax

ControlsToMatch is a type of collection. Therefore its ASP.NET text is nested as a series of LabeledControl objects
within the <ControlsToMatch> tag. Each LabeledControl is a tag with <des:LabeledControl> followed by
the properties.

The following example represents the same LabeledControl objects shown in the editor window above. The first two
textboxes have labels defined using Label controls. The last two do not and require the Text property to be used.

<des:DuplicateEntryValidator id="Validator1" runat="server">

<ControlsToMatch>
 <des:LabeledControl ControlID="TextBox1" Label-LabelControlID="Label1">
 </des:LabeledControl>
 <des:LabeledControl ControlID="TextBox2" Label-LabelControlID="Label2">
 </des:LabeledControl>
 <des:LabeledControl ControlID="TextBox3" Label-Text="Field 3">
 </des:LabeledControl>
 <des:LabeledControl ControlID="TextBox4" Label-Text="Field 4">
 </des:LabeledControl>
</ControlsToMatch>

</des:DuplicateEntryValidator>

Adding To ControlsToMatch Programmatically

Use the Add() method on ControlsToMatch to supply the ID or reference of the control to evaluate. Optionally
specify its Label. The Add() method is overloaded with these choices:

[C#]

int Add(string pDataControlID)

int Add(string pDataControlID, string pLabelText)

int Add(string pDataControlID, string pLabelControlID,
 PeterBlum.DES.CaseConversion pCase)

int Add(Control pDataControl)

int Add(Control pDataControl, string pLabelText)

int Add(Control pDataControl, Control pLabelControl,
 PeterBlum.DES.CaseConversion pCase)

[VB]

Function Add(ByVal pDataControlID As String) As Integer

Function Add (ByVal pDataControlID As String, _
 ByVal pLabelText As String) As Integer

Function Add (ByVal pDataControlID As String, _
 ByVal pLabelControlID As String, _
 ByVal pCase As PeterBlum.DES.CaseConversion) As Integer

Function Add (ByVal pDataControl As Control) As Integer

Function Add (ByVal pDataControl As Control, _
 ByVal pLabelText As String) As Integer

Function Add (ByVal pDataControl As Control, _
 ByVal pLabelControl As Control, _
 ByVal pCase As PeterBlum.DES.CaseConversion) As Integer

pDataControlID maps to the ControlID property. pDataControl maps to the ControlInstance property. pLabelText
maps to the Label.Text property. pLabelControl maps to the Label.LabelControl property. pCase maps to the
Label.Case property.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 109 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Example

Add items to ControlsToMatch, for TextBox1 and TextBox3. TextBox1 uses a label in a Label1. TextBox3 uses text for
its label.

[C#]

Validator1.ControlsToMatch.Add(TextBox1, Label1);
Validator1.ControlsToMatch.Add(TextBox3, "Field 3");

[VB]

Validator1.ControlsToMatch.Add(TextBox1, Label1)
Validator1.ControlsToMatch.Add(TextBox3, "Field 3")

 MatchMode (enum PeterBlum.DES.DuplicateMatchMode) – Choose the rule to interpret the value of each data entry
control. The enumerated type PeterBlum.DES.DuplicateMatchMode has these values:

o Exact - Use a case sensitive textual comparison.

o CaseInsensitive - Use a case insensitive textual comparison.

o SelectedIndex – Compare the SelectedIndex properties on ListBoxes and DropDownLists. (ListBoxes and
DropDownLists also support Exact and CaseInsensitive modes.)

It defaults to DuplicateMatchMode.Exact.

 IgnoreUnassigned (Boolean) – Determines how to handle controls that are unassigned (as indicated by the
UnassignedText or UnassignedIndex properties.)

When true, if the data entry control's value matches UnassignedText or UnassignedIndex, it is never matched. When
false, the data entry control's value is always used, even when blank. It defaults to true.

 UnassignedText (string) – Used when IgnoreUnassigned is true. When this value matches the textual value of the
data entry control, that value is never matched to the others. It is considered "blank" and should be ignored. It defaults to
"".

 UnassignedIndex (integer) – Used when IgnoreUnassigned is true. When this SelectedIndex value matches the
SelectedIndex of the list-type control, that value is never matched to the others. It is considered "no selection" and
should be ignored. The value -1 indicates the list has no selection. 0 is the first item in the list. It defaults to -1.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 110 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

UnwantedWordsValidator
Condition UnwantedWordsCondition

License Required Peter’s More Validators

Supported controls All that declare the ValidationPropertyAttribute including TextBox, ListBox, DropDownList

Can evaluate blank fields Yes when the IgnoreBlankText property is false

The UnwantedWordsValidator compares the contents of a textbox to a list of strings. If it matches one of the strings, the
condition fails.

This control can retrieve a list of strings from a data source such as a DataSet, DataTable or a
System.Collections.IEnumerable collection, in the same way you populate a ListBox or DropList.

It has rules to match “whole words”, case insensitive, and “broken words”. A broken word is a word that is separated by non-
letter characters in an attempt to avoid detection. For example, if the word “flower” is unwanted, an error will be reported on
“f*l*o*w*e*r”.

Note: This Validator uses a Regular Expression to evaluate the list of strings. In fact, it is subclassed from RegexValidator
and RegexCondition.

Note: This Validator is not meant for long lists of strings, especially when you validate on the client side. It has to copy all of
the strings to the client-side, which slows transmission times. There are likely limits to the size of a regular expression
pattern. Test your page against the data to be sure this Validator will work for you.

Note: This Validator should not be used for detecting SQL Injection or Script Injection attacks. Hackers have so many textual
patterns that they can use, they usually will get around your efforts to block them here. Instead, use the Validator controls
from the Peter’s Input Security module.

Click on any of these topics to jump to them:

 Adding Validation to a WebForm

 Using This Condition

 Condition Properties for UnwantedWordsValidator

 Properties for Error Messages

 ErrorFormatters: Customizing the Appearance of the Error Message

 Other Validator Properties that Customize the Appearance

 Changing When the Validator is Evaluated

 Other Properties

 Additional Validation Topics

http://msdn2.microsoft.com/en-us/library/system.web.ui.validationpropertyattribute.aspx�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemCollectionsIEnumerableClassTopic.asp�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 111 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Using This Condition
Specify the control to evaluate with the ControlIDToEvaluate property.

The data comes from three properties that are familiar if you have used databinding on ListBoxes or DataGrids: DataSource,
DataMember, and DataTextField. However, you don’t need to call the DataBind() method unless you use databinding
notation in the ASP.NET text (as shown below.) Alternatively, you can add strings to the Items property.

The evaluation rules are in the properties WholeWord, CaseInsensitive, and BrokenWords.

This Validator’s ErrorMessage supports the token “{UNWANTED}” to state the offending word. See “Tokens in Error
Messages” for details on tokens.

Examples

This example uses the DataSource property.

<des:UnwantedWordsValidator id="UWWV1" runat="server"
 ControlIDToEvaluate="TextBox1"
 ErrorMessage="Please do not enter {UNWANTED}."
 DataSource="<%# dataSet1 %>" DataMember="SwearWords"
 DataTextField="Word"
 BrokenWords="True" CaseInsensitive="True" >
</des:UnwantedWordsValidator>

This example uses the Items property.

<des:UnwantedWordsValidator id="UWWV2" runat="server"
 ControlIDToEvaluate="TextBox1"
 ErrorMessage="Please do not enter {UNWANTED}."
 BrokenWords="True" CaseInsensitive="True" >
 <Items>
 <des:UnwantedWordsItem Value="crap"></des:UnwantedWordsItem>
 <des:UnwantedWordsItem Value="damnit"></des:UnwantedWordsItem>
 </Items>
</des:UnwantedWordsValidator>

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 112 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Condition Properties for UnwantedWordsValidator
Each Validator control includes a Condition with several properties that require setup. The Properties Editor shows them in
the “Condition” section.

The following list are properties specific to this Condition:

 ControlIDToEvaluate, ControlToEvaluate, Trim, and NotCondition – See “Properties Common to most
Conditions”.

 Items (PeterBlum.DES.UnwantedWordsCollection) – This collection contains the strings which are unwanted. It
contains PeterBlum.DES.UnwantedWordsItem objects. These objects have one property, Value, where you
assign an unwanted word.

Entering Items in ASP.NET Declarative Syntax

Strings are defined in PeterBlum.DES.UnwantedWordsItem objects.

Define strings like this:

<Items>
 <des:UnwantedWordsItem Value="unwanted1" />
 <des:UnwantedWordsItem Value="unwanted2" />
</Items>

Entering Items Programmatically

Use the Add() method on the Items property. Pass a string or PeterBlum.DES.UnwantedWordsItem object
containing the unwanted word.

[C#]

UnwantedWordsValidator1.Items.Add("unwanted");

[VB]

UnwantedWordsValidator1.Items.Add("unwanted")

 DataSource (object) – You can populate the Items property from a data source using this property. Your data source can
be a DataSet, DataTable, or a collection that implements System.Collections.IEnumerable such as an
ArrayList. If you use the design time features of the Properties Editor, you can select a DataSet object already on your
design mode surface with the “(DataBindings)” property.

o When using a DataSet, also set the DataMember property to the name of the table that contains the column you
are using. You can leave DataMember blank only if DataSet only has one table. Always set DataTextField to
the name of the column that you are using.

o When using a DataTable, set the DataTextField property to the name of the column that you are using.

o When using a collection that implements IEnumerable, you can populate it with strings or any object class that
has a string property with the desired data. If you use an object that has a string property, give the name of that
property in the DataTextField property.

Note: If you set up the DataSource property in the Properties Editor, you must call the DataBind() method on the
Validator in your Page_Load() method. You do not need to call DataBind() when you assign this property
programmatically.

 DataMember (string) – When using the DataSource property with a DataSet, assign the name of the table within that
DataSet that contains the column you are using. It defaults to "".

 DataTextField (string) – When using the DataSource property, assign this to the name of the column or property that
contains the data. When it is a DataSet or DataTable, this should be the name of the column within a table. When it is an
IEnumerable collection, it should be the name of a property on an object. When it is a collection that only contains
strings, leave this blank. It defaults to "".

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemCollectionsIEnumerableClassTopic.asp�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 113 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 WholeWord (Boolean) – When true, all unwanted words must match to whole word. That means their first letter is
not preceded by another letter and their last letter is not followed by another letter. When false, the unwanted work
can be found inside another word. It defaults to false.

 BrokenWords (Boolean) – Look for a word whose characters are broken up by non-letter characters. For example, the
unwanted word "darn" can be written "d&a!r-n" and it will be detected. Spaces are valid separators. So the word "darn"
will be found in "radar noise" unless you set WholeWord to true. As a result, WholeWord mode is strongly
recommended.

When true, the feature is enabled. When false, it is disabled. It defaults to false.

 CaseInsensitive (Boolean) – When true, the regular expression parser will perform a case insensitive match. When
false, it will perform a case sensitive match. It defaults to true.

 IgnoreBlankText (Boolean) – Determines how blank text is evaluated. When true, the condition cannot be evaluated.
When false, the condition evaluates as failed (reports an error). It defaults to true.

 GlobalStorageName (string) – Use this property to improve speed. This Condition uses a .net Regex object to evaluate
text. It takes time for a .net Regex object to convert a regular expression into its internal format. With this setting that
will only happen once per application start, and it is further optimized by using the “Compiled” option on the .net Regex
object.

Do not use this when the list of strings will change. It should only be used when the list of strings remains identical while
the application runs.

You define a unique name for the list in Items and assign it to GlobalStorageName. For example, “CussWords” or
“123abc”.

If you have several UnwantedWordsValidators that use identical rules, use the same value of GlobalStorageName so
that they all share the same Regex object. This further improves your application’s speed.

When used, the .net Regex object is stored in the Application collection. Application[GlobalStorageName] is
assigned the string containing the regular expression. Application[GlobalStorageName + "_RE"] is
assigned the Regex object. So give this a name that will not conflict with anything else that you place into the
Application collection.

WARNING: Several other Validators offer the GlobalStorageName property. Never use the same value amongst
different types of Validators.

 PrepareProperties (delegate PeterBlum.DES.RegexPrepareProperties) – When using the GlobalStorageName and you
run time consuming code to create the list of strings, put your time consuming code in a method assigned to
PrepareProperties. Your code will only be called once and its results will be cached. This increases the application
speed by avoiding that time consuming code when it’s not needed.

This is recommended when you use the DataSource property as database queries are time consuming.

Your method will update the properties of the UnwantedWordsCondition, the Condition object of the
UnwantedWordsValidator. The UnwantedWordsCondition and UnwantedWordsValidator share the same properties
described throughout this section. Normally you assign the Items or DataSource property. However, any of the
properties can be changed.

Here is the format of a method assigned to PrepareProperties.

[C#]

public void MethodName(PeterBlum.DES.RegexCondition pCondition)

[VB]

Public Sub MethodName(ByVal pCondition As PeterBlum.DES.RegexCondition)

Parameters

pCondition

The Condition class for the UnwantedWordsValidator. It is declared as RegexCondition, which is a base class
to the UnwantedWordsCondition. So typecast pCondition to

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttpapplicationstateclasstopic.asp�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 114 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

PeterBlum.DES.UnwantedWordsCondition to access its properties. UnwantedWordsCondition has
the same properties as shown in this section.

[C#]

MyValidator.PrepareProperties =
 new PeterBlum.DES.RegexPrepareProperties(methodname);

[VB]

MyValidator.PrepareProperties = _
 New PeterBlum.DES.RegexPrepareProperties(AddressOf methodname)

Example

Assigns a DataSet to the DataSource property after populating it. The sqlDataAdapter1 is a SQLDataAdapter
already on the page and fully attached to a SqlConnection and SqlCommand object. dataSet1 is a DataSet
already on the page. Assume that they are all objects on this page generated by Visual Studio.net. The DataMember and
DataTextName properties retain their previously assigned values in this example.

[C#]

public void ApplyExpression(PeterBlum.DES.RegexCondition pRegexCondition)
{
 sqlDataAdapter1.Fill(dataSet1);
 ((PeterBlum.DES.UnwantedWordsCondition)pCondition).DataSource =
 dataSet1;
}

[VB]

Public Sub ApplyExpression(ByVal pRegexCondition As _
 PeterBlum.DES.RegexCondition)
 sqlDataAdapter1.Fill(dataSet1)
 CType(pCondition, PeterBlum.DES.UnwantedWordsCondition).DataSource = _
 dataSet1
End Sub

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 115 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

SelectedIndexRangesValidator
Condition SelectedIndexRangesCondition

License Required Peter’s More Validators

Supported controls ListBox, DropDownList, RadioButtonList

Can evaluate blank fields Yes

The SelectedIndexRangesValidator evaluates the SelectedIndex property on ListBoxes, DropDownLists, and
RadioButtonLists. It is an extension of the idea behind the SelectedIndexValidator where you indicate a SelectedIndex that’s
valid. In this Validator, you provide one or more ranges that the SelectedIndex can match to. For example, if you have a
dropdownlist of 20 items and you want items 1, 10-12, and 15-20 to be valid, this is the right Validator.

ALERT: Do not use this with the ASP.NET AJAX Control Toolkit’s CascadingDropDown control. The CascadingDropDown
does not support the SelectedIndex property on the server side. It only supports the textual value. So use a validator that
evaluates the text value, such as CompareToStringsValidator.

Click on any of these topics to jump to them:

 Adding Validation to a WebForm

 Using This Condition

 Condition Properties for SelectedIndexRangesValidator

 Properties for Error Messages

 ErrorFormatters: Customizing the Appearance of the Error Message

 Other Validator Properties that Customize the Appearance

 Changing When the Validator is Evaluated

 Other Properties

 Additional Validation Topics

Using This Condition
Specify the control to evaluate with the ControlIDToEvaluate property.

Establish the indexes that the user can select in the Ranges property, a collection where you define ranges in
PeterBlum.DES.SelectedIndexRange objects. Use the StartIndex and EndIndex properties of
PeterBlum.DES.SelectedIndexRange to establish a range. When StartIndex = EndIndex, a single index is
defined.

This Validator’s ErrorMessage property supports the token “{TEXTVALUE}” to state the value that is out of range.

Example

<des:SelectedIndexRangesValidator id="SIRValidator1" runat="server"
 ControlIDToEvaluate="ListBox1" ErrorMessage='Do not select "{TEXTVALUE}"'>
 <Ranges>
 <des:SelectedIndexRange StartIndex="10" EndIndex="13" />
 <des:SelectedIndexRange StartIndex="25" EndIndex="9999" />
 <des:SelectedIndexRange EndIndex="0" />
 <des:SelectedIndexRange StartIndex="4" EndIndex="4" />
 </des:SelectedIndexRange>
 </Ranges>
</des:SelectedIndexRangesValidator>

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 116 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Condition Properties for SelectedIndexRangesValidator
Each Validator control includes a Condition with several properties that require setup. The Properties Editor shows them in
the “Condition” section.

The following list are properties specific to this Condition:

 ControlIDToEvaluate, ControlToEvaluate, and NotCondition – See “Properties Common to most Conditions”.

 Ranges (PeterBlum.DES.SelectedIndexesRangesCollection) – This is a collection where you define index ranges and
single indexes that are selectable. Any index not included in this list will evaluate as “failed”. (You can use the
NotCondition property to reverse this logic.)

You add PeterBlum.DES.SelectedIndexesRange objects to this collection. Each object has two properties,
StartIndex and EndIndex. Use them to specify a range of indexes. StartIndex must always be less than or equal to
EndIndex. If they have the same value, the range is just one index.

StartIndex and EndIndex use a value of -1 to indicate that a list with no selection is valid. StartIndex defaults to
-1. EndIndex defaults to 9999.

Entering Items in ASP.NET Declarative Syntax

Ranges is a type of collection. Therefore its ASP.NET text is nested as a series of
PeterBlum.DES.SelectedIndexesRange objects within the <Ranges> tag. Each SelectedIndexRange object
is a tag with <des:SelectedIndexRange> followed by the properties.

For example:

<Ranges>
 <des:SelectedIndexRange StartIndex="10" EndIndex="13">
 </des:SelectedIndexRange>
 <des:SelectedIndexRange StartIndex="25" EndIndex="9999">
 </des:SelectedIndexRange>
 <des:SelectedIndexRange StartIndex="4" EndIndex="4">
 </des:SelectedIndexRange>
</Ranges>

Entering Items Programmatically

Use the Add() method on the Ranges property. Pass an index or a range of indices. Here is the overloaded method
definition.

PeterBlum.DES.SelectedIndexesRange has these constructors:

[C#]

int Add(int pIndex) // sets StartIndex=EndIndex

int Add(int pStartIndex, int pEndIndex)

[VB]

Function Add(ByVal pIndex As Integer) As Integer ' StartIndex=EndIndex

Function Add(ByVal pStartIndex As Integer, _
 ByVal pEndIndex As Integer) As Integer

This example builds the same ranges as shown above.

[C#]

SelectedIndexRangesValidator1.Items.Add(10, 13);
SelectedIndexRangesValidator1.Items.Add(25, 9999);
SelectedIndexRangesValidator1.Items.Add(4);

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 117 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

[VB]

SelectedIndexRangesValidator1.Items.Add(10, 13)
SelectedIndexRangesValidator1.Items.Add(25, 9999)
SelectedIndexRangesValidator1.Items.Add(4)

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 118 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

ListSizeValidator
Condition ListSizeCondition

License Required Peter’s More Validators

Supported controls ListBox, DropDownList

Can evaluate blank fields Yes

The ListSizeValidator evaluates a listbox or dropdownlist to determine if has enough elements listed. It is used when the
user interface allows adding and removing elements to a list. Typically users want to report an error when the list is empty,
however, this allows a range (Minimum/Maximum) to provide more flexibility.

Click on any of these topics to jump to them:

 Adding Validation to a WebForm

 Using This Condition

 Condition Properties for ListSizeValidator

 Properties for Error Messages

 ErrorFormatters: Customizing the Appearance of the Error Message

 Other Validator Properties that Customize the Appearance

 Changing When the Validator is Evaluated

 Other Properties

 Additional Validation Topics

Using This Condition
Specify the ListBox to evaluate with the ControlIDToEvaluate property. By default, it requires at least one in the list. Set a
different minimum with the Minimum property and introduce a maximum with the Maximum property.

Example

Require between 0 and 4 items in ListBoxA. Require between 2 and 3 items in ListBoxB.

<asp:ListBox ID="ListBoxA" runat="server" >
 <asp:ListItem>1</asp:ListItem>
 <asp:ListItem>2</asp:ListItem>
 <asp:ListItem>3</asp:ListItem>
</asp:ListBox>
<des:Button ID="MoveAtoB" runat="server" CausesValidation="False"
 OnClick="MoveAtoB_Click" Text="Move >>" />
<des:Button ID="MoveBtoA" runat="server" CausesValidation="False"
 OnClick="MoveBtoA_Click" Text="<< Move" />
<asp:ListBox ID="ListBoxB" runat="server">
 <asp:ListItem>4</asp:ListItem>
 <asp:ListItem>5</asp:ListItem>
 <asp:ListItem>6</asp:ListItem>
</asp:ListBox>
<des:ListSizeValidator id="ListSizeValidator1" runat="server"
 ControlIDToEvaluate="ListBoxA" Maximum="4" Minimum="0"
 ErrorMessage="Max {MAXIMUM}. You have {COUNT} {COUNT:item:items}." >
</des:ListSizeValidator>
<des:ListSizeValidator id="ListSizeValidator2" runat="server"
 ControlIDToEvaluate="ListBoxB" Maximum="3" Minimum="2"
 ErrorMessage="Between {MINIMUM} and {MAXIMUM}.
 You have {COUNT} {COUNT:item:items}." >
</des:ListSizeValidator>

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 119 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Condition Properties for ListSizeValidator
Each Validator control includes a Condition with several properties that require setup. The Properties Editor shows them in
the “Condition” section.

The following list are properties specific to this Condition:

 ControlIDToEvaluate, ControlToEvaluate, and NotCondition – See “Properties Common to most Conditions”.

 UnassignedIndex (Integer) – The item number of the item that is considered unselected. When -1, there are no selected
items. 0 is the first item in the list. It defaults to -1.

Change it when an item, such as the first element of a RadioButtonList, ListBox, or DropDownList indicates an
unassigned state. The CheckBoxList control does not use this property because a CheckBoxList is unassigned when all
checkboxes are unmarked.

 Minimum (Integer) – The minimum value of the range. When 0, it allows an empty list.

It defaults to 1.

 Maximum (Integer) – The maximum value of the range. When 0, there is no maximum.

It defaults to 0.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 120 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

CreditCardNumberValidator
Condition CreditCardNumberCondition

License Required Peter’s More Validators

Supported controls TextBox, HtmlInputText

Can evaluate blank fields Yes when the IgnoreBlankText property is false

The CreditCardNumberValidator reviews the text pattern to confirm it matches the rules for credit card numbers. Four rules
are applied:

 The text is all digits. You have the option of allowing the user to type spaces with the AllowSpaces property. They are
ignored by the validator.

 Luhn’s formula. This is an algorithm based on the values of digits across the number. All credit card numbers are
designed to match this formula.

 Match to a particular brand by lead digits. For example, all Visa cards start with ‘4’ while MasterCard starts with ‘51’,
‘52’, ‘53’, ‘54’, or ‘55’.

 Match to a particular brand by length of the text. For example, Visa is either 13 or 16 characters while MasterCard is
only 16 characters.

Click on any of these topics to jump to them:

 Adding Validation to a WebForm

 Using This Condition

 Condition Properties for CreditCardNumberValidator

 Editing Credit Card Brands

 Properties for Error Messages

 ErrorFormatters: Customizing the Appearance of the Error Message

 Other Validator Properties that Customize the Appearance

 Changing When the Validator is Evaluated

 Other Properties

 Additional Validation Topics

http://www.webopedia.com/TERM/L/Luhn_formula.html�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 121 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Using This Condition
Specify the control to evaluate with the ControlIDToEvaluate property.

The first two rules are always applied. The last two depend on these factors:

 The CheckByBrand property is true. (It defaults to true.)

 The credit card brands that you support are defined in the des.config and custom.des.config files. Open each of
these files to the <CreditCards> section. des.config should not be edited. It is the factory list of supported cards.
Use the custom.des.config file to remove factory defaults that you do not want and add new rules. See “Editing
Credit Card Brands”. Alternatively, you can programmatically assign credit card brand information to the
CreditCardNumberValidator or CreditCardNumberCondition using the AddBrand() method.

Example

<des:CreditCardNumberValidator id="CreditCardNumberValidator1" runat="server"
 ControlIDToEvaluate="TextBox1"
 ErrorMessage="Invalid credit card number">
</des:CreditCardNumberValidator>

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 122 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Condition Properties for CreditCardNumberValidator
Each Validator control includes a Condition with several properties that require setup. The Properties Editor shows them in
the “Condition” section.

The following list are properties specific to this Condition:

 ControlIDToEvaluate, ControlToEvaluate, Trim, and NotCondition – See “Properties Common to most
Conditions”.

 CheckByBrand (Boolean) – Determines if the credit card brands are checked. When true, they are.

Credit card brands are defined in the des.config and custom.des.config files, in the <CreditCards> section.
You can modify the custom.des.config file to add new cards or remove those defined in the des.config file (the
factory defaults.) See “Editing Credit Card Brands”.

It defaults to true.

 IgnoreBlankText (Boolean) – Determines how blank text is evaluated. When true, the Condition cannot be evaluated.
When false, the Condition evaluates as failed (reports an error). It defaults to true.

 AllowSpaces (Boolean) – You may prefer to let users enter spaces in their credit card number. Your server side code
will strip out those spaces for its own use. If this is the case, set AllowSpaces to true. The validator does not care
where the spaces are located or if there are several in a row.

It defaults to false.

The CleanedUpNumber property gives you the number entered without the spaces.

 CleanedUpNumber (Boolean) – Read Only. Gets the text that is evaluated by this validator without the spaces that were
permitted by the AllowSpaces property.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 123 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Editing Credit Card Brands
The CreditCardNumberValidator can restrict credit card numbers to particular brands when you set the CheckByBrand
property to true. It uses a list of brands defined in both the des.config and custom.des.config files. You can override
the values from the config files using the AddBrand() method. The des.config file provides the factory default list. You
should not edit it because each release of DES replaces this file. Instead, you edit the custom.des.config file, adding new
credit cards, changing the prefix property on existing ones, and identifying those defined in des.config that you want to
remove.

Use your favorite text editor to open both des.config and custom.des.config files within your web application’s \DES
folder. Locate the <CreditCards> section in both files.

Reminder: XML is case sensitive. Type the tag and attribute names in exactly as shown.

 To add a new brand, add a new row to the <CreditCards> section of custom.des.config in this format:

<CreditCard name="[brand name]" length="[length]" prefixes="[prefixes]" />

o name – The credit card brand name. It must be unique against all <CreditCard> entries in both files.

o length – The number of digits defined for this brand. If the credit card has multiple lengths, create separate
<CreditCard> rows, each with a different length and a different name like “Card-14chars” and “Card-15chars”.

o prefixes – Each brand defines one or more prefixes to the number. For example, Visa uses “4” and MasterCard uses
“51”-“55”. When defining multiple prefixes, specify each separated by the pipe character (|).

<CreditCard name="ABCCard" length="14" prefixes="591|595|596" />

 To edit the prefixes of a card defined in des.config, simply add it again in custom.des.config with the complete list
of prefixes for that card. It will override the entry in des.config.

 To remove a brand already listed in des.config, add a new row to the <CreditCards> section of
custom.des.config in this format:

<CreditCard name="[brand name]" enabled="false" />

o name – The credit card brand name. It must be identical to the name in des.config.

<CreditCard name="MasterCard" enabled="false" />

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 124 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

AddBrand Method

You can override the global credit card brands defined in des.config and custom.des.config on each
CreditCardNumberValidator and CreditCardNumberCondition using the AddBrand() method.

[C#]

void AddBrand(string pPrefixes, int pLength)

[VB]

Sub AddBrand(ByVal pPrefixes As String, ByVal pLength As Integer)

Parameters

pPrefixes

One or more prefixes that identify the brand of credit card. Each separate prefix must be separated by a pipe
character. For example, Master Card uses '51'-'55'. Format this like '51|52|53|54|55'.

pLength

The number of digits required by this brand.

The first call to AddBrand() will replace all global credit card brands with the one you specify.

Generally you will call this method in the Page_Load() method. Here is an example where MasterCard and Visa are
added to CreditCardNumberValidator1.

[C#]

CreditCardNumberValidator1.AddBrand("51|52|53|54|55", 16);
CreditCardNumberValidator1.AddBrand("4", 13);
CreditCardNumberValidator1.AddBrand("4", 16);

[VB]

CreditCardNumberValidator1.AddBrand("51|52|53|54|55", 16)
CreditCardNumberValidator1.AddBrand("4", 13)
CreditCardNumberValidator1.AddBrand("4", 16)

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 125 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

ABARoutingNumberValidator
Condition ABARoutingNumberCondition

License Required Peter’s More Validators

Supported controls TextBox, HtmlInputText

Can evaluate blank fields Yes when the IgnoreBlankText property is false

The ABARoutingNumberValidator reviews the text pattern to confirm it matches the rules for check routing numbers. Three
rules are applied:

 The text is all digits.

 The text must be exactly 9 digits.

 The pattern much match a checksum validation rule specified by the American Bankers Association.

The ABARoutingNumberValidator does not validate the number against actual institution routing numbers. You must supply
another piece of software to do that. Many sites prefer to separate the data entry form from the validation phase of a
transaction through a confirmation page. Thus, they will want validation against actual institutions to be separated. If you
want to keep them on the same page, use the IgnoreConditionValidator or CustomValidator to call functions on your ABA
routing number software package.

Click on any of these topics to jump to them:

 Adding Validation to a WebForm

 Using This Condition

 Condition Properties for ABARoutingNumberValidator

 Properties for Error Messages

 ErrorFormatters: Customizing the Appearance of the Error Message

 Other Validator Properties that Customize the Appearance

 Changing When the Validator is Evaluated

 Other Properties

 Additional Validation Topics

Using This Condition
Specify the control to evaluate with the ControlIDToEvaluate property.

Example

<des:ABARoutingNumberValidator id="ABARoutingNumberValidator1" runat="server"
 ControlIDToEvaluate="TextBox1"
 ErrorMessage="Invalid routing number">
</des:ABARoutingNumberValidator>

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 126 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Condition Properties for ABARoutingNumberValidator
Each Validator control includes a Condition with several properties that require setup. The Properties Editor shows them in
the “Condition” section.

The following list are properties specific to this Condition:

 ControlIDToEvaluate, ControlToEvaluate, Trim, and NotCondition – See “Properties Common to most
Conditions”.

 IgnoreBlankText (Boolean) – Determines how blank text is evaluated. When true, the Condition cannot be evaluated.
When false, the Condition evaluates as failed (reports an error). It defaults to true.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 127 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

CountTrueConditionsValidator
Condition CountTrueConditions

License Required Peter’s More Validators

Supported controls Uses the fields of other Conditions that you select

Can evaluate blank fields Yes

The CountTrueConditionsValidator lets you define a list of conditions for a number of fields. Evaluates how many of those
Conditions are true (evaluate as “success”) and compares them to a minimum and maximum. The condition indicates success
when the count of true conditions is greater or equal to the minimum and less than or equal to the maximum.

Here are some common uses for this Validator:

 Limit the number of marks amongst a list of checkboxes (not using a CheckBoxList). Set the maximum to the limit. Use
one CheckStateCondition for each checkbox.

 Require that at least one checkbox is marked in a column of checkboxes in a DataGrid. Simply set the minimum to 1 and
add CheckStateCondition objects programmatically in the DataGrid’s ItemCreated event handler.

 Require that only one of several textboxes have text. Set the minimum and maximum to 1. Use one
RequiredTextCondition for each textbox.

Click on any of these topics to jump to them:

 Adding Validation to a WebForm

 Using This Condition

 Condition Properties for CountTrueConditionsValidator

 Properties for Error Messages

 ErrorFormatters: Customizing the Appearance of the Error Message

 Other Validator Properties that Customize the Appearance

 Changing When the Validator is Evaluated

 Other Properties

 Additional Validation Topics

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 128 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Using This Condition
Specify a list of conditions in the Conditions property. You can add any Condition class available within DES. See
“Evaluating Conditions” and “Non-Data Entry Conditions”.

The Minimum and Maximum properties determine the limits when they are not 0.

You can use MultiCondition classes to build Boolean expressions that represent a single Condition in the collection. When
the Boolean expression is evaluated as true, the count is incremented. The child condition objects of the expression do not
contribute to the count.

This Validator’s ErrorMessage property supports several tokens. “{COUNT}” is the number of selected items.
“{MINIMUM}” is replaced by the property Minimum. “{MAXIMUM}” is replaced by the property Maximum. See
“Tokens in Error Messages” for details on tokens.

Example

 <des:CountTrueConditionsValidator id="CountTrueCondValidator1" runat="server"
 Maximum="2"
 ErrorMessage="Please pick no more than {MAXIMUM} colors.">
<Conditions>
 <des:CheckStateCondition ControlIDToEvaluate="Checkbox1">
 </des:CheckStateCondition>
 <des:CheckStateCondition ControlIDToEvaluate="Checkbox2">
 </des:CheckStateCondition>
 <des:CheckStateCondition ControlIDToEvaluate="Checkbox3">
 </des:CheckStateCondition>
 <des:CheckStateCondition ControlIDToEvaluate="Checkbox4">
 </des:CheckStateCondition>
 <des:CheckStateCondition ControlIDToEvaluate="Checkbox5">
 </des:CheckStateCondition>
</Conditions>

 </des:CountTrueConditionsValidator>

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 129 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Condition Properties for CountTrueConditionsValidator
Each Validator control includes a Condition with several properties that require setup. The Properties Editor shows them in
the “Condition” section.

The following list are properties specific to this Condition:

 NotCondition – See “Properties Common to most Conditions”.

 Conditions (PeterBlum.DES.ConditionsCollection) – A collection of Condition classes. Each Condition object will be
evaluated. If its condition indicates success, the count is incremented. If the condition indicates failure or it cannot
evaluate, the count remains unchanged. The total count is compared to the range established with the Minimum and
Maximum properties where the count must be greater or equal to Minimum and less than or equal to Maximum.

You can add any Condition class available within DES. See “Evaluating Conditions” and “Non-Data Entry Conditions”
for a list.

Adding Conditions In Design Mode

The Properties Editor for the Conditions property provides a window where you can define conditions.

o Click the Add button to add a new Condition. A list of Conditions appears. Select one and click OK. An editor
window for the condition appears. Fill in its property grid and click OK.

o Click the Edit button to open a Condition and edit its property grid.

o Click the Remove button to remove a Condition.

Adding Conditions with ASP.NET Declarative Syntax

Conditions is a type of collection. Therefore its ASP.NET text is nested as a series of child controls within the
<Conditions> tag. Each Condition is a tag with <des:conditionclass> followed by the properties.

The following example represents the same conditions shown in the editor window above. They are
CheckStateConditions.

<des:CountTrueConditionsValidator id="Validator1" runat="server">

 <Conditions>
 <des:CheckStateCondition ControlIDToEvaluate="CheckBox2" />
 <des:CheckStateCondition ControlIDToEvaluate="CheckBox3" />
 <des:CheckStateCondition ControlIDToEvaluate="CheckBox4" />
 <des:CheckStateCondition ControlIDToEvaluate="CheckBox5" />
 <des:CheckStateCondition ControlIDToEvaluate="CheckBox6" />
 </Conditions>

</des:CountTrueConditionsValidator>

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 130 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Adding Conditions Programmatically

1. Create an instance of the desired Condition. There is a constructor that takes no parameters.

Note: There are also constructors that take parameters. Each demands an “owner” in the first parameter. That
value must be the CountTrueConditionsValidator object.

2. Assign property values.

3. Use the Add() method on the Conditions property to add the Condition object.

In this example, add two CheckStateConditions for CheckBox2 and CheckBox3.

[C#]

PeterBlum.DES.CheckStateCondition vCond1 =
 new PeterBlum.DES.CheckStateCondition();
vCond1.ControlToEvaluate = CheckBox2; // instance example
Validator1.Conditions.Add(vCond1);
PeterBlum.DES.CheckStateCondition vCond2 =
 new PeterBlum.DES.CheckStateCondition();
vCond2.ControlIDToEvaluate = "CheckBox3"; // ID example
Validator1.Conditions.Add(vCond2);

[VB]

Dim vCond1 As PeterBlum.DES.CheckStateCondition =_
 New PeterBlum.DES.CheckStateCondition()
vCond1.ControlToEvaluate = CheckBox2 ' instance example ()
Validator1.Conditions.Add(vCond1)
Dim vCond2 As PeterBlum.DES.CheckStateCondition =_
 New PeterBlum.DES.CheckStateCondition()
vCond2.ControlIDToEvaluate = "CheckBox3" ' ID example
Validator1.Conditions.Add(vCond2)

 Minimum (Integer) – The minimum number of Conditions that evaluate successfully in the Conditions property. It only
counts the results of the immediate children in the Conditions property. When it is 0, there is no minimum. It defaults to
0.

 Maximum (Integer) – The maximum number of Conditions that evaluate successfully in the Conditions property. It
only counts the results of the immediate children in the Conditions property. It must be greater or equal to 1. It defaults
to 99999.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 131 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

MultiConditionValidator
Condition MultiCondition

License Required Peter’s Professional Validation

Supported controls Uses the fields of other conditions that you select

Can evaluate blank fields Depends on child conditions

The MultiConditionValidator evaluates multiple Conditions within a Boolean expression. Often, your validation rules cannot
be expressed with one Condition. MultiConditionValidator will handle many of those cases. This Validator is frequently
used. When you ask “how can I combine several Validators?”, choose the MultiConditionValidator.

For example, the user picks a product from a listbox and enters a quantity in a text box. If each product has a different
quantity limit, you need to determine if the user exceeds the limit. Suppose the first product in the drop down list is limited to
5. The Boolean expression to describe this rule could be written this way:

(SelectedIndexCondition on ListBox1 has SelectedIndex = 0)

AND

(CompareToValueCondition on TextBox1 has the value Less than or equal to 5)

The MultiConditionValidator will show its error message when the Boolean expression evaluates as false.

Often the MultiConditionValidator is used to show one error message in place of individual error messages of several
Validator controls. For example, normally you have to set up two Validators with separate errors messages to handle the
cases that the field must not be blank (RequiredTextValidator) and it contains an integer (DataTypeCheckValidator). If you
want one error message, use a MultiConditionValidator with the conditions of the original Validators –
RequiredTextCondition and DataTypeCheckCondition – and the logical AND. If either the field is blank or it’s not an
integer, one error message appears.

HINT: The Tutorial file includes several detailed examples on using the MultiConditionValidator.

Click on any of these topics to jump to them:

 Adding Validation to a WebForm

 Using This Condition

 Condition Properties for MultiConditionValidator

 Properties for Error Messages

 ErrorFormatters: Customizing the Appearance of the Error Message

 Other Validator Properties that Customize the Appearance

 Changing When the Validator is Evaluated

 Other Properties

 Additional Validation Topics

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 132 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Using This Condition
Specify a list of conditions in the Conditions property. Use the Operator to determine if the conditions are evaluated with
AND or OR logic.

The MultiConditionValidator offers a unique editor from within the Properties Editor to help you construct the expression.
Here is the editor describing the same Boolean expression:

 <des:MultiConditionValidator id="MultiConditionValidator1" runat="server"
 Operator="AND"
 ErrorMessage="The quantity is limited to 5.">
<Conditions>
 <des:SelectedIndexCondition Name="SelectedIndexCondition"
 ControlIDToEvaluate="ListBox1" Index="0" Selected="True" />
 <des:CompareToValueCondition Name="CompareToValueCondition"
 ControlIDToEvaluate="TextBox1"
 DataType="Integer" Operator="LessThanEqual" ValueToCompare="5" />
</Conditions>

 </des:MultiConditionValidator>

The MultiConditionValidator can use any of the Conditions classes defined throughout DES, including those listed in this
section with each Validator (see “Finding the Condition by Validator”) and the Non-Data Entry Conditions described in the
next section. The Non-Data Entry Conditions can evaluate attributes of fields that the user doesn’t edit, such as visibility,
enabled, and style settings.

If you want a Validator control to be enabled only when a certain Condition is met, you can use the MultiConditionValidator.
However, you will find that each Validator control’s Enabler property is a better choice. In fact, the Enabler property
supports the MultiCondition, allowing you to build Boolean expressions that enable the control.

For example, suppose you have a textbox with a RequiredTextValidator. The RequiredTextValidator should only be enabled
when two checkboxes on the form are marked. You would set up the Enabler property with a MultiCondition, like this:

 <des:RequiredTextValidator id="RequiredTextValidator1" runat="server"
 ControlIDToEvaluate="TextBox1"
 ErrorMessage="Please assign a value here.">
<EnablerContainer>
 <des:MultiCondition Name="MultiCondition" Operator="AND">
 <Conditions>
 <des:CheckStateCondition ControlIDToEvaluate="CheckBox1" />
 <des:CheckStateCondition ControlIDToEvaluate="CheckBox2" />
 </Conditions>
 </des:MultiCondition>
</EnablerContainer>

 </des:RequiredTextValidator>

Note: The tag “<EnablerContainer>” is used by the Enabler property. Normally you would expect to see the tag with the
same name as the property (<Enabler>). In this case, DES is working around a limitation of the .Net framework that only
supports polymorphic properties by nesting them into a collection class. (EnablerContainer is a hidden property that is a
collection class.)

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 133 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Condition Properties for MultiConditionValidator
Each Validator control includes a Condition with several properties that require setup. The Properties Editor shows them in
the “Condition” section.

The following list are properties specific to this Condition:

 ReportErrorsAfter and NotCondition – See “Properties Common to most Conditions”.

 Operator (enum PeterBlum.DES.AND_OROperator) – Determines if the immediate child conditions are evaluated with
a logical AND or logical OR operator. The enumerated type PeterBlum.DES.AND_OROperator has these values:

o OR – This is the default

o AND

 Conditions (PeterBlum.DES.ConditionsCollection) – A collection of Condition classes. See “Finding the Condition by
Validator”.

Each Condition object will be part of a Boolean expression whose Boolean operators are determined by the Operator
and NotCondition properties.

As individual Conditions are evaluated, if they indicate success, they are considered “true” in the Boolean expression. If
they indicate failure, they are considered “false”. Any condition that cannot be evaluated will be ignored as if you didn’t
define it.

You can use MultiCondition classes as items in this collection to build complex Boolean expressions. For example, to
enter the expression: Checkbox1 is checked AND (TextBox1 contains text OR TextBox2 contains text), you will define
a MultiConditionValidator with an AND operator and these conditions:

 CheckStateCondition on Checkbox1

 MultiCondition using the OR operator on these conditions:

 RequiredTextCondition on TextBox1

 RequiredTextCondition on TextBox2

HINT: The Tutorial file includes several detailed examples on using the MultiConditionValidator.

Adding Conditions In Design Mode

The Properties Editor for the Conditions property provides a window where you can define conditions.

o Click the Add button to add a new Condition. A list of Conditions appears. Select one and click OK. An editor
window for the Condition appears. Fill in its property grid and click OK.

If you want to add a child Condition to a MultCondition node, first click on it. Then click Add.

o Click the Edit button to open a Condition and edit its property grid.

o Click the Remove button to remove a Condition.

o Click the Move To button to relocate a Condition between the MultiConditionValidator and any of its child
nodes.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 134 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Adding Conditions in ASP.NET Declarative Syntax

Conditions is a type of collection. Therefore its ASP.NET text is nested as a series of child controls within the
<Conditions> tag. Each Condition is a tag with <des:conditionclass> followed by the properties.

The following example represents the same conditions shown in the editor window above.

<des:MultiConditionValidator id="Validator1" runat="server">

 <Conditions>
 <des:SelectedIndexCondition ControlIDToEvaluate="ListBox1"
 Index="0" />
 <des:CompareToValueCondition ControlIDToEvaluate="TextBox1"
 ValueToCompare="5" DataType="Integer"
 Operator="LessThanEqual" />
 </Conditions>

</des:MultiConditionValidator>

Adding Conditions Programmatically

1. Create an instance of the desired Condition. There is a constructor that takes no parameters.

Note: There are also constructors that take parameters. Each demands an “owner” in the first parameter. That
value must be the MultiConditionValidator object.

2. Assign property values.

3. Use the Add() method on the Conditions property to add the Condition object.

In this example, add the two Conditions shown in the above examples.

[C#]

PeterBlum.DES.SelectedIndexCondition vCond1 =
 new PeterBlum.DES.SelectedIndexCondition();
vCond1.ControlToEvaluate = ListBox1;
vCond1.Index = 0;
Validator1.Conditions.Add(vCond1);

PeterBlum.DES.CompareToValueCondition vCond2 =
 new PeterBlum.DES.CompareToValueCondition();
vCond2.ControlToEvaluate = TextBox1;
vCond2.ValueToCompare = "5";
vCond2.DataType = "Integer";
vCond2.Operator = PeterBlum.DES.ConditionOperator.LessThanEqual;
Validator1.Conditions.Add(vCond2);

[VB]

Dim vCond1 As PeterBlum.DES.SelectedIndexCondition =_
 New PeterBlum.DES.SelectedIndexCondition()
vCond1.ControlToEvaluate = ListBox1
vCond1.Index = 0
Validator1.Conditions.Add(vCond1)

Dim vCond2 As PeterBlum.DES.CompareToValueCondition =_
 New PeterBlum.DES.CompareToValueCondition()
vCond2.ControlToEvaluate = TextBox1
vCond2.ValueToCompare = "5"
vCond2.DataType = "Integer"
vCond2.Operator = PeterBlum.DES.ConditionOperator.LessThanEqual
Validator1.Conditions.Add(vCond2)

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 135 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

CustomValidator
Condition CustomCondition

License Required Peter’s Professional Validation

Supported controls All

Can evaluate blank fields Depends upon the code that you write to evaluate data

The CustomValidator allows you to build your own Conditions without subclassing. (See also “IgnoreConditionValidator”
for another approach to custom validation.) Use it when the existing Validators, including the MultiConditionValidator, do
not provide the logic you need for your Condition. For example, you may need to compare a text field’s value to data within
a database.

The CustomValidator requires some programming, where you define an event handler to evaluate the Condition on the server
side and a JavaScript function to evaluate the Condition on the client-side. See “Using This Condition” for details. DES can
supply a lightweight client-side evaluation function when you use the OverrideClientSideEvaluation property.

Click on any of these topics to jump to them:

 Adding Validation to a WebForm

 Using This Condition

 Steps to Defining Your CustomValidator

 Server-Side Condition

 Server-Side Condition Example

 Changing The Error Message On The Server Side

 Client-Side

 The Client-Side Evaluation Function

 Accessing Data On the Client-Side

 Client-Side Condition Example

 Changing The Error Message On The Client Side

 Condition Properties for CustomValidator

 Properties for Error Messages

 ErrorFormatters: Customizing the Appearance of the Error Message

 Other Validator Properties that Customize the Appearance

 Changing When the Validator is Evaluated

 Other Properties

 Additional Validation Topics

There are alternatives to using a CustomValidator:

 You can subclass a Condition class. This provides reusability and becomes part of the Conditions you can use when
building a Boolean expression within a MultiConditionValidator or using the Enabler property. This way, you only need
to write the new logic introduced by your Condition and let the MultiConditionValidator supply the JavaScript and
server-side code for all other parts of the Condition needed on this page. For example, suppose a textbox must contain
text and only then will it compare its value to a database. You would write your Condition to compare to the database
and use the RequiredTextCondition along with your new condition in the MultiConditionValidator. See the Developer’s
Guide for details on subclassing Conditions.

 Every Validator control provides the ability to replace both its client-side and server-side Condition code with your own.
In fact, the CustomValidator is simply a Validator control that lacks its own evaluation functions and demands that you
supply them. If another Validator control has a better set of properties, use it as the start of your custom Validator. You

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 136 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

can even use its existing Condition, called from within your own code, if you just want to expand upon its Condition’s
rule. See “Extending Existing Validators and Conditions” for details.

 You can define a new data type to use in Conditions that have a DataType property. Suppose you want to use the logic
of the CompareTwoFieldsValidator but the fields will contain a time of day. Subclass the
PeterBlum.DES.DESTypeConverter class and install it into the custom.des.config file. Now DES’s
Validators and Conditions will support your data type. See the Developer’s Guide for details on subclassing
DESTypeConverters.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 137 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Using This Condition
This Condition requires you to create all of the evaluation logic. You should always define a server-side method that is
attached to the ServerCondition property. You can create a similar client-side function in JavaScript and assign the function
name to the CustomEvalFunctionName property.

Your function can access any control on the page through traditional coding. You can establish up to two controls in the
ControlIDToEvaluate and SecondControlIDToEvaluate properties. When used, their values are passed to your evaluation
functions automatically. On the client-side, your function will be fired when these fields are changed. Additionally, features
like setting focus to the field with the error or changing its style are supported by your CustomValidator when using
ControlIDToEvaluate and SecondControlIDToEvaluate.

Steps to Defining Your CustomValidator

These steps will give you the big picture for setting up a CustomValidator or replacing the conditions of other Validators.
The sections that follow provide extensive details and examples.

1. Always set up server-side validation by testing PeterBlum.DES.Globals.Page.IsValid is true in your post back event
handler before using the data. See “Properties and Methods to Validate the Page”.

2. Determine your logic. How will your code determine “success”, “failure” and “cannot evaluate”? At this time, you make
a decision if you can write client-side code. If your evaluation logic needs features only found on the server side, like
database access, it will not offer a client-side evaluation function.

3. Determine what data entry controls on the page will be evaluated. Set ControlIDToEvaluate and
SecondControlIDToEvaluate properties to any data entry controls that you want to fire your Validator on the client-
side. These controls will have their textual values passed to your evaluation functions too. You can add other controls to
ExtraControlsToRunThisAction.

4. Create a method that matches the delegate PeterBlum.DES.ServerConditionEventHandler. See “Server-
Side Condition”, below.

Your method should set args.IsMatch to true or false depending on the results. If the conditions do not permit
evaluation, set args.CannotEvaluate to true. For example, if you depend on the textbox to contain a date and it does
not, it cannot be evaluated. Examples are shown in “Server-Side Condition Example”.

5. If you want to modify the ErrorMessage property, see “Changing The Error Message On The Server Side”.

6. Hookup your evaluation method to the ServerCondition property in your Page_Load() method. When using a grid,
DetailsView, or FormView, use its ItemCreated or RowCreated event handler.

It is set up slightly differently than the post back event handlers you may have used on other controls. In these examples,
CustomValidator1 is getting connected to the method named CoordinateDataTypeCheck.

[C#]

 CustomValidator1.ServerCondition =
 new ServerConditionEventHandler(CoordinateDataTypeCheck);

[VB]

 CustomValidator1.ServerCondition = _
 New ServerConditionEventHandler(AddressOf CoordinateDataTypeCheck)

STEPS CONTINUE ON THE NEXT PAGE

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 138 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

7. While the server side evaluation event is required, a client-side evaluation function is optional. If you cannot write a
client-side evaluation function, consider using the OverrideClientSideEvaluation property to give some interactivity.
Stop at this step.

8. Write the client-side evaluation function in JavaScript. It takes one parameter, the client-side object that represents the
condition. This object has properties to describe elements like the ID to the control specified in ControlToEvaluate. It
must return one of three values: 1 (success), 0 (failed), -1 (cannot evaluate). See “Client-Side ” and “Client-Side
Condition Example”.

9. If you want to change the error message on the client-side, see “Changing The Error Message On The Client Side”.

10. Assign the name of the function to the CustomEvalFunctionName property. In this example, the function named
“CoordinateCondition” is used:

<des:CustomValidator ID="CustomValidator1" runat="server"
 CustomEvalFunctionName="CoordinateCondition" [other parameters]>
</des:CustomValidator>

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 139 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Server-Side Condition
You will write a method that matches the delegate PeterBlum.DES.ServerConditionEventHandler and assign it
to the ServerCondition property on the CustomValidator control or CustomCondition class. Your code will be passed
information about the Condition, controls selected by the user, and the textual value of those controls. It must return an
indication whether the Condition indicates “success”, “failure”, or “cannot evaluate”.

Note: The ServerCondition property only handles one event handler and must be assigned programmatically (it does not
appear in the Properties Editor.)

The ServerConditionEventHandler is defined here:

[C#]

public delegate void ServerConditionEventHandler(
 BaseCondition sourceCondition, ConditionEventArgs args);

[VB]

Public Delegate Sub ServerConditionEventHandler(_
 ByVal sourceCondition As BaseCondition, _
 ByVal args As ConditionEventArgs)

Parameters

sourceCondition

The Condition class that is associated with this condition. It contains all the properties from the user, including
ControlIDToEvaluate. However, args offers a better way to get to the controls assigned by the user.

When accessing its properties, be sure to typecast sourceCondition to the Condition subclass that you expect. When
using this with CustomValidator or CustomCondition, typecast to PeterBlum.DES.CustomCondition.

args

The args parameter is used to communicate with the caller. The caller will pass a subclass of ConditionEventArgs,
PeterBlum.DES.ConditionTwoFieldEventArgs, with references to each control assigned by the user in
ControlIDToEvaluate and SecondControlIDToEvaluate (if available). It will also retrieve the textual value from
each of these fields (if possible) and supply them. Your event handler should evaluate the condition based on these
inputs and set the property IsMatch to true or false. If your event handler identifies that the Condition cannot
be evaluated, it should set CannotEvaluate to true.

If your evaluation method is called from a Validator control (some CustomConditions are used in other controls),
you can modify the error message and summary error message shown on the Validator if you like. Access the
Validator control with the Validator property and modify its ErrorMessage, ErrorMessageLookupID,
SummaryErrorMessage, and SummaryErrorMessageLookupID properties. See “Changing The Error Message
On The Server Side”.

REMINDER: Always typecast the args parameter to PeterBlum.DES.ConditionTwoFieldEventArgs when using it
with a CustomValidator or CustomCondition.

Note: CustomValidator and CustomCondition are passed PeterBlum.DES.ConditionTwoFieldEventArgs, not
PeterBlum.DES.ConditionEventArgs, because this system handles another case: customizing the evaluation method
of any other Validator. They take PeterBlum.DES.ConditionEventArgs,
PeterBlum.DES.ConditionOneFieldEventArgs or PeterBlum.DES.ConditionTwoFieldEventArgs depending on their
support for the ControlIDToEvaluate and SecondControlIDToEvaluate properties

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 140 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Properties of PeterBlum.DES.ConditionTwoFieldEventArgs

 IsMatch (Boolean) – When your condition evaluates as “success”, set this to true. When your condition evaluates as
“failed”, set this to false. When your condition evaluates as “cannot evaluate”, leave this alone and set
CannotEvaluate to true. IsMatch defaults to false so be sure to set it to true if it’s valid.

 CannotEvaluate (Boolean) – When your condition cannot evaluate the data it’s given, set this to true. An example of
“cannot evaluate”: The user enters X,Y coordinates. Your function evaluates that X and Y are within the range of 1-
1000. You decide that cannot evaluate a blank field. (You leave this to the RequiredTextValidator.)

 Validator (PeterBlum.DES.BaseAnyValidator) – The Validator control that is being evaluated. Generally you use this to
modify the error message. If you created a CustomCondition for use in another type of control, this will be
null/nothing. See “Changing The Error Message On The Server Side”.

 Value (string) – The textual value associated with Validator.ControlIDToEvaluate. If the Trim property is true, it
will be trimmed already. If the control does not have a textual value, it will be "".

 ControlToEvaluate (System.Web.UI.Control) – A reference to the control assigned to Validator.ControlToEvaluate.
If ControlToEvaluate is not used, this is null/nothing.

 SecondValue (string) – The textual value associated with Validator.SecondControlIDToEvaluate. If the Trim
property is true, it will be trimmed already. If the control does not have a textual value, it will be "".

 SecondControlToEvaluate (System.Web.UI.Control) – A reference to the control assigned to
Validator.SecondControlToEvaluate. If SecondControlToEvaluate is not used, this is null/nothing.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 141 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Server-Side Condition Example

In this example, the event handler will evaluate one textbox field to determine that it represents coordinates with the format
“##,##” (a location with X,Y coordinates). It expects the user to assign ControlIDToEvaluate to the textbox. It cannot
evaluate when the ControlIDToEvaluate is unassigned or the Value is blank.

[C#]

uses PeterBlum.DES;
// other uses statements and the namespace declaration

public class MyForm : System.Web.UI.Page
{
 protected System.Web.UI.WebControls.TextBox TextBox1;
 protected CustomValidator CustomValidator1;

 protected void Page_Load(object sender, System.EventArgs e)
 {
 CustomValidator1.ServerCondition =
 new ServerConditionEventHandler(CoordinateDataTypeCheck);
 // notice no += here, unlike most event handlers
 }
 protected void CoordinateDataTypeCheck(BaseCondition sourceCondition,
 ConditionEventArgs args)
 {
 // shows typecasting
 CustomCondition vCondition = (CustomCondition) sourceCondition;
 ConditionTwoFieldEventArgs vArgs =
 (ConditionTwoFieldEventArgs) args;

 // cannot evaluate when blank or ControlToEvaluate is unassigned
 if ((vArgs.Value == "") ||
 (vArgs.ControlToEvaluate == null))
 vArgs.CannotEvaluate = true;
 else
 { // evaluate
 string[] vParts = vArgs.Value.Split(",");
 if (vParts.Length < 2) // bad format
 vArgs.IsMatch = false;
 else
 try
 {
 Convert.ToInt32(vParts[0]); // throws exceptions if not ints
 Convert.ToInt32(vParts[1]);
 vArgs.IsMatch = true;
 }
 catch (Exception)
 {
 vArgs.IsMatch = false;
 }
 }
 } // CoordinateDataTypeCheck

} // class

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 142 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

[VB]

Imports PeterBlum.DES
' other Imports statements and the namespace declaration

Public Class MyForm
 Inherits System.Web.UI.Page
{
 Protected WithEvents TextBox1 As System.Web.UI.WebControls.TextBox
 Protected WithEvents CustomValidator1 As CustomValidator

 Protected Sub Page_Load(ByVal sender As object, _
 ByVal e As System.EventArgs)
 CustomValidator1.ServerCondition = _
 New ServerConditionEventHandler(AddressOf CoordinateDataTypeCheck)
 ' notice no AddHandler here, unlike most event handlers
 End Sub
 Protected Sub CoordinateDataTypeCheck(_
 ByVal sourceCondition As BaseCondition, _
 ByVal args As ConditionEventArgs)

 ' shows typecasting
 Dim vCondition As CustomCondition = _
 CType(sourceCondition, CustomCondition)
 Dim vArgs As ConditionTwoFieldEventArgs =_
 CType(args, ConditionTwoFieldEventArgs)

 ' cannot evaluate when blank or ControlToEvaluate is unassigned
 If ((vArgs.Value = "") Or _
 (vArgs.ControlToEvaluate Is Nothing)) Then
 vArgs.CannotEvaluate = True
 Else ' evaluate
 Dim vParts() As string = vArgs.Value.Split(",")
 If (vParts.Length < 2) Then
 vArgs.IsMatch = False ' bad format
 Else
 Try
 Convert.ToInt32(vParts(0)) ' throws exceptions if not ints
 Convert.ToInt32(vParts(1))
 vArgs.IsMatch = True
 Catch e As Exception
 vArgs.IsMatch = False
 End Try
 End If
 End If
 End Sub ' CoordinateDataTypeCheck

End Class

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 143 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Changing The Error Message On The Server Side

Your server-side condition event handler can modify the error message of any Validator that uses it. See “Server-Side
Condition”.

The ServerCondition event handler passes you the ConditionEventArgs object. It contains the Validator property, which is
a reference to the Validator control. Your event handler can modify any property on the Validator control based on your rules
for the condition. Most likely, you will change ErrorMessage, ErrorMessageLookupID, SummaryErrorMessage, and
SummaryErrorMessageLookupID.

Be aware of these rules when using the ConditionEventArgs.Validator property:

 Changes you make will only apply to the currently generated page. When the page is posted back the next time, the
properties will return to the values assigned in the ASP.NET declarative syntax or Page_Load() method. You can
override this by using the ViewStateMgr property on a Validator. Call
Validator.ViewStateMgr.TrackProperty("propertyname") in Page_Load().

 The Validator property will be null/nothing when your Condition event handler is used in a FieldStateController.

This is an example of updating the ErrorMessage property within the evaluation method. It replaces the property with the
value “One is not supported” when the user enters a value of “One”:

[C#]

 protected void MyCondition(BaseCondition sourceCondition,
 ConditionEventArgs args)
 {
 ConditionTwoFieldEventArgs vArgs =
 (ConditionTwoFieldEventArgs) args;
 ... condition evaluation code here. Set IsMatch ...

 // assuming args.Value = "One", change the message
 if ((vArgs.Value == "One") && (vArgs.Validator != null))
 vArgs.Validator.ErrorMessage = "One is not supported";

 } // MyCondition

[VB]

 Protected Sub MyCondition(ByVal sourceCondition As BaseCondition, _
 ByVal args As ConditionEventArgs)
 Dim vArgs As ConditionTwoFieldEventArgs = _
 CType(args, ConditionTwoFieldEventArgs)
 ... condition evaluation code here. Set IsMatch ...

 ' assuming args.Value = "One", change the message
 If (vArgs.Value = "One") And Not (vArgs.Validator Is Nothing)
 vArgs.Validator.ErrorMessage = "One is not supported"
 End If
 End Sub ' MyCondition

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 144 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Client-Side Condition
The client-side can use an “evaluation function” to implement the logic of your Condition, much like it uses on the server-
side. Each Validation control except for CustomValidator and IgnoreConditionValidator supplies the evaluation function for
you. You can supply the evaluation function with these two properties:

 CustomEvalFunctionName – When you write your own function, specify its name here. The remainder of this topic
explains how to set up your custom function.

 OverrideClientSideEvaluation – When you only want server side validation, you can still offer a client-side user
interface with this property. It’s interface hides the error message after the field is changed or submit it clicked. It can
also invoke a callback to let server side validation update the error message after the Control to Evaluate has changed.
See the OverrideClientSideEvaluation property.

If neither of these properties are set up, the CustomValidator and CustomCondition will continue to provide server-side
validation, but no client-side validation.

Click on any of these topics to jump to them:

 The Client-Side Evaluation Function

 Accessing Data On the Client-Side

 Client-Side Condition Example

 Changing The Error Message On The Client Side

The Client-Side Evaluation Function

You write the function in JavaScript, either adding it directly to the page or through the
Page.RegisterClientScriptBlock() method. See “Adding Your JavaScript to the Page”.

The evaluation function takes one parameter, the client-side representation of the Condition class. This is a JavaScript object
with numerous properties. For a complete look at the client-side Condition object, see the Developer’s Guide.

The client-side function must return an integer with one of these values: 1 = success; 0 = failed; -1 = cannot evaluate.

Here is the basic structure of the function:

function MyConditionName(cond)
{
 // evaluate the condition from the fields on the page
 if (cannotevaluate logic)
 return -1;
 else if (success logic)
 return 1;
 else
 return 0;
}

Here is a sample CustomValidator using MyConditionName:

<des:CustomValidator id="CustomValidator1" runat="server"
 CustomEvalFunctionName="MyConditionName" other properties />

On the next few pages, you will see some JavaScript functions that assist in writing your function and an example.

http://msdn2.microsoft.com/en-us/library/system.web.ui.page.registerclientscriptblock(vs.71).aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 145 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Accessing Data On the Client-Side Condition object

DES supplies a number of methods and properties on the Condition object (the cond parameter). It also supplies functions to
evaluate some of those properties. Here are a few that will help you build your evaluation function:

 The property cond.IDToEval contains the ID to the ControlToEvaluate. You can access the element that represents this
control using DES_GetByID(id) like this:

var vFld = DES_GetById(cond.IDToEval);

 The property cond.IDToEval2 contains the ID to the SecondControlToEvaluate. You can access the element that
represents this control using DES_GetByID(id) like this:

var vFld2 = DES_GetById(cond.IDToEval2);

 The DES_GetTextValue(id, trim, cond.GetText) function retrieves the textual value of an control, given
its ID and a flag indicating if you want to trim the text or not. (cond.Trim contains the same value found in the
Validator’s Trim property.)

var vVal = DES_GetTextValue(cond.IDToEval, cond.Trim, cond.GetText);
var vVal2 = DES_GetTextValue(cond.IDToEval2, cond.Trim, cond.GetText);

 The DES_GetSelIdx(id, cond.GetSelIdx) function retrieves the index of a list or DropDownList control,
given its ID and the property GetSelIdx on the cond parameter. (GetSelIdx may be null.) It returns -1 for no selection,
0 for the first element selected, etc.

var vIdx = DES_GetSelIdx(cond.IDToEval, cond.GetSelIdx);
var vIdx2 = DES_GetSelIdx(cond.IDToEval2, cond.GetSelIdx2);

 When using DES’s numeric, date or time textboxes, use the DES_GetDTTBValue(id) function to return their value
in its native format (integer, floating point, JavaScript Date or integer representing a number of seconds).

var vNativeValue = DES_GetDTTBValue(cond.IDToEval);

 Checkboxes and RadioButtons, except those in CheckBoxLists or RadioButtonLists, can be evaluated like this:

var vChecked = DES_GetById(cond.IDToEval).checked;

 Checkboxes and RadioButtons within CheckBoxLists or RadioButtonLists can be evaluated like this:

var vChecked = DES_GetById(cond.IDToEval + "_" + pos).checked;

pos is the offset into the list where 0 is the first item.

 If the condition is part of a Validator, you can override the error message and summary error message. See “Changing
The Error Message On The Client Side”.

 See “JavaScript Support Functions” for additional functions.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 146 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Client-Side Condition Example

This example is the same as the Server-Side Condition Example above. The JavaScript function will evaluate one textbox
field to determine that it represents coordinates with the format “##,##”. The user is expected to assign
ControlIDToEvaluate to the textbox. It cannot evaluate when the ControlIDToEvaluate is unassigned or the textual value
is blank.

<script type='text/javascript' language='javascript'>
function CoordinateCondition(cond)
{
 if (cond.IDToEval == "") // ControlIDToEvaluate is unassigned
 return -1;
 var vVal1 = DES_GetTextValue(cond.IDToEval, cond.Trim, cond.GetText);
 if (vVal1 == "") // blank
 return -1;
 var vParts = vVal1.split(",");
 if (vParts.length < 2)
 return 0; // failed – bad format
 else if ((DES_ParseInt(vParts[0]) != NaN) &&
 (DES_ParseInt(vParts[1]) != NaN))
 return 1; // success
 else
 return 0; // failed – could not convert to numbers
}
</script>

Here is the associated CustomValidator:

<des:CustomValidator id="CustomValidator1" runat="server"
 CustomEvalFunctionName="CoordinateCondition" ControlIDToEvaluate="TextBox1" />

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 147 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Changing The Error Message On The Client Side

You can modify the error message and summary error message on any condition that you define in the
CustomEvalFunctionName property. See “Client-Side ”.

When you write your evaluation function, the function is passed the client-side Condition object. That object contains a
property called ‘Action’ which contains the error message in its ErrMsg property and the summary error message in the
SumMsg property. You can change each of these properties in your custom condition function, based on the rules of your
Condition.

Be aware of these rules when using the Action property.

 If you decide to change the ErrMsg or SumMsg property values, do it for every case your function is called. After all,
you are overriding the original error message from when the page is loaded. So assign ErrMsg to its original value and
new values as the condition dictates.

 Always test for the presence of the Action property before getting its properties. There are cases where Action is null
(doesn’t exist.)

This is an example of updated both the ErrMsg and SumMsg properties. This function gets text from a text box. If they enter
“One”, use the error message “One is not supported”. Otherwise, use the message “Type something else”.

function MyCondition(cond)
{
 if (cond.IDToEval == "")
 return -1;
 var vValue = DES_GetTextValue(cond.IDToEval, cond.Trim, cond.GetText);
 // always set the error message when the Action exists
 if (cond.Action != null)
 if (vValue == "One")
 {
 cond.Action.ErrMsg = "One is not supported";
 cond.Action.SumMsg = "One is not supported in the first field.";
 }
 else
 {
 cond.Action.ErrMsg = "Type something else";
 cond.Action.SumMsg = "Type something else in the first field.";
 }
 ... evaluate the condition and return 1, 0 or -1 ...
}

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 148 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Condition Properties for CustomValidator
Each Validator control includes a Condition with several properties that require setup. The Properties Editor shows them in
the “Condition” section.

The following list are properties specific to this Condition:

 ControlIDToEvaluate, ControlToEvaluate, ReportErrorsAfter, Trim, NotCondition and
ExtraControlsToRunThisAction – See “Properties Common to most Conditions”.

 SecondControlIDToEvaluate (string) – Identifies an optional second control. It is passed to your evaluation function on
the client and server side.

 SecondControlToEvaluate (System.Web.UI.Control) – An alternative to SecondControlIDToEvaluate. Use it when
the control is not in the same or ancestor naming container. It must be assigned programmatically. For example, if you
have a Validator instance in the variable “Val2” and a textbox instance in the variable “TextBox2”, write code like this:
Val2.SecondControlToEvaluate = TextBox2.

When programmatically assigning properties to a Validator control or Condition class, if you have access to the control
object that will be evaluated, it is better to assign it here than assign its ID to the SecondControlIDToEvaluate property
because DES operates faster using SecondControlToEvaluate.

 CustomEvalFunctionName (string) – Specify the function name of the client-side evaluation function as described in
“The Client-Side Evaluation Function”.

 OverrideClientSideEvaluation (PeterBlum.DES.OverrideClientSideEvaluationType) – Use this when you cannot write
a JavaScript evaluation function but want some interaction in your user interface. This property sets up a predefined
evaluation function that hides the error message your server side evaluation function set during post back. It hides the
error message when the user changes the field(s) or submits the page.

Choose this when your server side function’s logic cannot be reproduced on the client-side, such as a database lookup.
This property will allow your server side function to supply the error message and the client-side to hide it and to blink it
if blinking is established in Globals.Page.BlinkOnSubmit.

The enumerated type PeterBlum.DES.OverrideClientSideEvaluationType has these values:

o No – Do not override. Use the function identified by CustomEvalFunctionName property or no client-side
user interface. This is the default.

o Hide – On post back, remove the error message after the user changes a field or submits the page. On a new
page, the error message is always hidden. It monitors changes on ControlIDToEvaluate,
SecondControlIDToEvaluate or any control in ExtraControlsToRunThisAction.

o HideOnSubmit – On post back, remove the error message only after the user submits the page. If there are
other errors on the page, the user will notice its removal. On a new page, the error message is always hidden.

o Callback – Not available in ASP.NET 1.x. A change to the ControlIDToEvaluate will cause a behind-the-
scenes callback to the server to run your page and validate the Validator. This way, your page appears to be
using client-side validation even though the server does the actual work. This system uses the ASP.NET 2.0
Client Callbacks architecture which has these issues:

 Some browsers may not support it. In this case, the Validator will only update on a traditional post back.
Consider using the CallbackOrHide setting to offer some kind of user interface for these browsers.

 The process of callbacks may take some time. After all, it has to make a request of the server. Once the
callback completes, the error message is either shown or hidden.

 Only one Validator should use this setting per data entry control to be validated. Unfortunately, the
ASP.NET 2.0 Callback architecture is designed for one event at a time.

When you use this feature, your page should be prepared a little differently. The Callback system will run your
OnInit and Page_Load events. ASP.NET supplies the Page.IsCallback property to help you optimize your code
within these methods. The goal is to avoid doing work that is not necessary for the Validator to do its job. For
example, if you normally query the database on post back, do not do this unless that query is used by the
Validator.

http://msdn2.microsoft.com/library/ms178208(en-us,vs.80).aspx�
http://msdn2.microsoft.com/library/ms178208(en-us,vs.80).aspx�
http://msdn2.microsoft.com/library/4kacsys6(en-us,vs.80).aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 149 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

o CallbackOrHide – Not available in ASP.NET 1.x. Works the same as CallBack except when the browser
doesn’t support the ASP.NET 2.0 client callback architecture, it works like the Hide setting.

Note: CustomConditions are supported in the Enabler property and FieldStateControllers.
OverrideClientSideEvaluationType should not be used in the Enabler or FieldStateController.

Example of Responding to a Callback

Suppose you have a CustomValidator that uses either OverrideClientSideEvaluation=Callback or
CallbackOrHide. This is how you intercept the callback and set the Validator’s IsValid property.

This code is within CustomValidator’s ServerCondition evaluation method. When you evaluation method is
called the ASP.NET page has assigned the data values of all web controls that are created as Page_Load()
finishes. You use those web controls to determine the value of IsValid.

In this example, TextBox1 must contain the name “Peter” (case insensitive).

[C#]

if (Page.IsCallBack)
{
 // Determine if the data is valid here
 IgnoreConditionValidator1.IsValid =
 CaseInsensitiveComparer.Default.Compare(TextBox1.Text, "Peter") == 0;
}

[VB]

If Page.IsCallBack Then
' Determine if the data is valid here
 IgnoreConditionValidator1.IsValid = _
 CaseInsensitiveComparer.Default.Compare(TextBox1.Text, "Peter") = 0
End If

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 150 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

IgnoreConditionValidator
Condition n/a

License Required Peter’s Professional Validation

Supported controls n/a

Can evaluate blank fields n/a

The IgnoreConditionValidator is similar to the CustomValidator. Both Validators are designed for you to write your own
code to determine if the Condition is valid or not. They go about it in different ways:

CustomValidator supports both client and server side validation. It requires your evaluation logic to be in its own event
handler method.

IgnoreConditionValidator supports only server side validation. You usually use it when your validation code is part of some
other logic that should not be separated out into the CustomValidator’s evaluation method. For example, you let your
business layer run some validation against the data. If it’s good, that layer saves the data; if it’s bad, that layer returns an error
message.

The IgnoreConditionValidator allows you to write code in one place and simply set the IsValid property to false on the
Validator when an invalid condition is found.

 You cannot create a client-side evaluation function. This is because it is designed for cases that are server specific, such
as database queries and calling web services. However, the OverrideClientSideEvaluation property can provide client-
side code to automatically hide the error message.

 Generally you are writing a post back event handler for a button that determines something is invalid.

 IsValid is always true after calling 5PeterBlum.DES.Globals.Page.Validate(). To indicate the Validator
is invalid, simply set IsValid to false.

For example, suppose you had a textbox where the user enters a Tracking ID code. You want to show a validation error
message when the user submits and there is no match for the Tracking ID code in your database. You would add the
IgnoreConditionValidator to show the error message. Then write the submit button’s Click event handler to run the database
lookup against the user’s Tracking ID code and either set the IgnoreConditionValidator.IsValid property to false (failed to
match) or take some other action when a matching record is found.

Click on any of these topics to jump to them:

 Adding Validation to a WebForm

 Using This Validator

 Condition Properties for IgnoreConditionValidator

 Example of Responding to a Callback

 Properties for Error Messages

 ErrorFormatters: Customizing the Appearance of the Error Message

 Other Validator Properties that Customize the Appearance

 Changing When the Validator is Evaluated

 Other Properties

 Additional Validation Topics

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 151 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Using This Validator
Set the IsValid property to false on post back after detecting an error. Optionally set the ErrorMessage property to the
desired message.

ALERT: Always set up server-side validation by testing PeterBlum.DES.Globals.Page.IsValid is true in your post back
event handler before using the data from the page. See “Properties and Methods to Validate the Page”.

If there is a control on the page which it uses, set the RelatedControlID property to that control. RelatedControlID is
supported by features like setting focus to the field with the error, changing the style of the field with the error, and
ValidationSummary’s HyperLinkToFields property.

This code shows the Click event handler that detects an illegal Tracking ID code in TextBox1. The stored procedure
“LookupCode” is passed the code and returns a row from a table with a column ID that contains the record ID. If that ID is
found, some action is taken. Otherwise, the IgnoreConditionValidator (ID=IgnoreConditionValidator1) has its IsValid
property set to false and the method is exited.

[C#]

private void Submit_Click(object sender, System.EventArgs e)
{
 if (PeterBlum.DES.Globals.Page.IsValid)
 {
 // connection string is in Application["ConnStr"]
 SqlConnection vConnection =
 new SqlConnection((string) Application["ConnStr"]);
 SqlCommand vCommand = new SqlCommand("LookupCode", vConnection);
 vCommand.Parameters.Add("@Code", TextBox1.Text.Trim());
 vCommand.CommandType = CommandType.StoredProcedure;
 try
 {
 vConnection.Open();
 SqlDataReader vReader = vCommand.ExecuteReader();
 if (vReader.Read())
 {
 // do something here with the record found
 }
 else // did not match.
 {
 // Set the IsValid property to false and exit the method
 IgnoreConditionValidator1.IsValid = false;
 return;
 }
 }
 finally
 {
 vConnection.Close();
 }
 } // if
}

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 152 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

[VB]

Private Sub Submit_Click(ByVal sender As Object, ByVal e As System.EventArgs)
 If PeterBlum.DES.Globals.Page.IsValid Then
 ' connection string is in Application["ConnStr"]
 Dim vConnection As SqlConnection = _
 New SqlConnection(Application["ConnStr"].ToString())
 Dim vCommand As SqlCommand = New SqlCommand("LookupCode", vConnection)
 vCommand.Parameters.Add("@Code", TextBox1.Text.Trim())
 vCommand.CommandType = CommandType.StoredProcedure
 Try
 vConnection.Open()
 Dim vReader As SqlDataReader = vCommand.ExecuteReader()
 If vReader.Read() Then
 ' do something here with the record found
 Else ' did not match.
 ' Set the IsValid property to false and exit the method
 IgnoreConditionValidator1.IsValid = False
 Exit Sub
 End If
 Finally
 vConnection.Close()
 End Try
 End If
End Sub

The IgnoreConditionValidator is often used to adding a list of error messages to the ValidationSummary control. Here’s how:

 Create one IgnoreConditionValidator for each error message.

 Set the ErrorMessage property.

 Set IsValid to false.

 Set ErrorFormatter.Display property to None.

 Add the IgnoreConditionValidator to a PlaceHolder or other container control.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 153 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Condition Properties for IgnoreConditionValidator
Each Validator control includes a Condition with several properties that require setup. The Properties Editor shows them in
the “Condition” section.

The following list are properties specific to this Condition:

 Trim, NotCondition and ExtraControlsToRunThisAction – See “Properties Common to most Conditions”.

 RelatedControlID (string) – Identifies a control that contains data used by this Validator. It is optional. When assigned,
it supports several features in DES:

o ValidationSummary.HyperLinkToFields property will establish a hyperlink to this control.

o All of these properties on PeterBlum.DES.Globals.Page will use this control: FocusAfterAlert and
ChangeStyleOnControlsWithError.

 RelatedControl (System.Web.UI.Control) – An alternative to RelatedControlID. Use it when the control is not in the
same or ancestor naming container. It must be assigned programmatically. For example, if you have a Validator instance
in the variable “Val2” and a textbox instance in the variable “TextBox2”, write code like this:
Val2.RelatedControl = TextBox2.

When programmatically assigning properties to this control, if you have access to the control object that will be
evaluated, it is better to assign it here than assign its ID to the RelatedControlID property because DES operates faster
using RelatedControl.

 OverrideClientSideEvaluation (PeterBlum.DES.OverrideClientSideEvaluationType) – Use this when you want some
interaction in your user interface. This property provides client-side behavior that hides the error message your server
side evaluation function set during post back. It hides the error message when the user changes the field(s) or submits the
page.

The enumerated type PeterBlum.DES.OverrideClientSideEvaluationType has these values:

o No – No client-side behaviors. This is the default.

o Hide – On post back, remove the error message after the user changes a field specified by RelatedControlID
or submits the page. On a new page, the error message is always hidden.

o HideOnSubmit – On post back, remove the error message only after the user submits the page. If there are
other errors on the page, the user will notice its removal. On a new page, the error message is always hidden.

o Callback – Not available in ASP.NET 1.x. A change to the ControlIDToEvaluate will cause a behind-the-
scenes callback to the server to run your page and validate the Validator. This way, your page appears to be
using client-side validation even though the server does the actual work. This system uses the ASP.NET 2.0
Client Callbacks architecture which has these issues:

 Some browsers may not support it. In this case, the Validator will only update on a traditional post back.
Consider using the CallbackOrHide setting to offer some kind of user interface for these browsers.

 The process of callbacks may take some time. After all, it has to make a request of the server. Once the
callback completes, the error message is either shown or hidden.

 Only one Validator should use this setting per data entry control to be validated. Unfortunately, the
ASP.NET 2.0 Callback architecture is designed for one event at a time.

When you use this feature, your page should be prepared a little differently. The Callback system will run your
OnInit and Page_Load events. ASP.NET supplies the Page.IsCallback property to help you optimize your code
within these methods. The goal is to avoid doing work that is not necessary for the Validator to do its job. For
example, if you normally query the database on post back, do not do this unless that query is used by the
Validator. See the example below.

o CallbackOrHide – Not available in ASP.NET 1.x. Works the same as CallBack except when the browser
doesn’t support the ASP.NET 2.0 client callback architecture, it works like the Hide setting.

http://msdn2.microsoft.com/library/ms178208(en-us,vs.80).aspx�
http://msdn2.microsoft.com/library/ms178208(en-us,vs.80).aspx�
http://msdn2.microsoft.com/library/4kacsys6(en-us,vs.80).aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 154 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Example of Responding to a Callback

Suppose you have an IgnoreConditionValidator that uses either OverrideClientSideEvaluation=Callback or
CallbackOrHide. This is how you intercept the callback and set the Validator’s IsValid property.

This code is within Page_Load() and must be able to execute every time the page loads. (In otherwords, not
buried inside an IF statement.) During Page_Load, the ASP.NET page has assigned the data values of all web
controls that are created as Page_Load starts. You use those web controls to determine the value of IsValid.

In this example, TextBox1 must contain the name “Peter” (case insensitive).

[C#]

if (Page.IsCallBack)
{
 // Determine if the data is valid here
 IgnoreConditionValidator1.IsValid =
 CaseInsensitiveComparer.Default.Compare(TextBox1.Text, "Peter") == 0;
}

[VB]

If Page.IsCallBack Then
' Determine if the data is valid here
 IgnoreConditionValidator1.IsValid = _
 CaseInsensitiveComparer.Default.Compare(TextBox1.Text, "Peter") = 0
End If

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 155 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Non-Data Entry Conditions
Conditions play several roles in each Validator control making them an important part of the framework.

 Each Validator control employs a Condition object to determine the rules of evaluating the data on the page.

 Each Validator control offers the Enabler property where a Condition object determines if the control will evaluate.

 The MultiConditionValidator builds its Boolean expressions using Conditions.

 The FieldStateController uses a Condition object to select whether the state changes are from its ConditionFalse or
ConditionTrue properties. The FieldStateController offers an Enabler property too. See the Peter’s Interactive
Pages User’s Guide for details.

The Validator controls identify the Conditions that they employ to evaluate data fields on the page. In addition, the Enabler
property, MultiConditionValidator, and FieldStateController can evaluate non-data attributes of any HTML tag on the page
using Non-Data Entry Conditions. Non-Data Entry Conditions answer questions like “is this field visible?”, “is this field
enabled”, “what value does the attribute [attributename] contain?”. They are particularly useful in Enablers so you can shut
off Validators whose associated control is invisible or disabled.

Non-Data Entry Conditions can evaluate any HTML tag on the page, not just data entry controls. When referring to an
HTML tag, it must have runat=server and an ID.

Click on any of these topics to jump to them:

 Non-Data Entry Condition Classes

 Using Non-Data Entry Conditions

 Properties for VisibleCondition

 Properties for EnabledCondition

 Properties for ClassNameCondition

 Properties for ReadOnlyCondition

 Properties for CompareToValueAttributeCondition

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 156 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Non-Data Entry Condition Classes
The following are the Non-Data Entry Conditions that look at other attributes of fields beyond their user-assign data values:

 VisibleCondition – Determines if a field is visible. See “Properties for VisibleCondition”.

Visibility is determined by the styles “visibility” and “display” (<tagname
style='visibility:hidden;display:none'/>). When the Visible property on any control is false, the
control is entirely turned off, generating no HTML. So do not use the VisibleCondition to detect it. Instead, Validators
and Conditions automatically turn themselves off when the associated control has Visible=false.

You do not have to use this in a Validator’s Enabler property unless you have set
PeterBlum.DES.Globals.Page.AutoDisableValidators to false.

 EnabledCondition – Determines if a field is enabled. See “Properties for EnabledCondition”.

The HTML attribute ‘disabled’ is on most form input tags: <input>, <select>, and <textarea>. Browsers
support the ‘disabled’ attribute on most data entry controls. Internet Explorer for Windows provides it on many other
tags. Only use it on non-data entry tags when your site is limited to IE browsers.

You do not have to use this in a Validator’s Enabler property unless you have set
PeterBlum.DES.Globals.Page.AutoDisableValidators to false.

 ClassNameCondition – Determines if a field has a style sheet class name that matches your setting. See “Properties for
ClassNameCondition”.

 ReadOnlyCondition – Determines if a field is read-only. See “Properties for ReadOnlyCondition”.

The HTML attribute ‘readonly’ is only on TextBox controls.

 CompareToValueAttributeCondition – Compares the value of any attribute or style on the field to a value that you
supply. You determine the operator for comparison. For example, attribute “tagName” equals “textarea”. See “Properties
for CompareToValueAttributeCondition”.

For example, suppose you have a textbox with a RequiredTextValidator. However, your textbox is invisible until the user
clicks on a checkbox (using DES’s FieldStateController or your own JavaScript code). When the page is submitted, the
invisible textbox should not be evaluated. You would use the VisibleCondition within the RequiredTextValidator’s Enabler
property to avoid problems.

<des:RequiredTextValidator id="RequiredTextValidator1" runat="server"
 ControlIDToEvaluate="TextBox1" ErrorMessage="This field is required">
 <EnablerContainer>
 <des:VisibleCondition Name="VisibleCondition"
 ControlIDToEvaluate="TextBox1" IsVisible="True" />
 </EnablerContainer>
</des:RequiredTextValidator>

Note: The tag “<EnablerContainer>” is used by the Enabler property. Normally you would expect to see the tag with the
same name as the property (<Enabler>). In this case, DES is working around a limitation of the .Net framework that only
supports polymorphic properties by nesting them into a collection class. (EnablerContainer is a hidden property that is a
collection class.)

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 157 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Using Non-Data Entry Conditions
Non-Data Entry Conditions can be assigned to these properties: Validator.Enabler, MultiConditionValidator.Conditions,
MultiCondition.Conditions, CountTrueConditionsValidator.Conditions, CountTrueConditions.Conditions,
FieldStateController.Condition, and FieldStateController.Enabler.

Start by assigning the ControlIDToEvaluate property to the control whose attribute or style you are evaluating. Non-Data
Entry Conditions can evaluate any HTML tag on the page, not just data entry controls. When referring to an HTML tag, it
must have runat=server and an ID. For example, a tag can be used if it is set up this way:

When using VisibleCondition, set the IsVisible property to indicate whether the field is visible or not.

When using EnabledCondition, set the IsEnabled property to indicate whether the field is enabled or not.

When using ReadOnlyCondition, set the IsReadOnly property to indicate whether the field is read only or not.

When using ClassNameCondition, set the ClassName property to that style sheet class name that you want to match. If you
want any class name except the name you supply, also set NotCondition to true.

When using CompareToValueAttributeCondition, set the attribute or style name in the AttributeName property. Set the
value to compare in the Value property. Set the data type of the attribute with the DataType property. Select whether you are
looking at an attribute or style with the AttributeType property. Finally, set the Operator property to compare the attribute
value to the Value property.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 158 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Properties for VisibleCondition
The following list are properties specific to this Condition:

 ControlIDToEvaluate, ControlToEvaluate, and NotCondition – See “Properties Common to most Conditions”.

 IsVisible (Boolean) – When true, the Condition indicates success if the control determined by ControlIDToEvaluate
is visible. When false, the Condition indicates success when the control is invisible. A control can be nested within
other controls that are invisible. This condition will always look through the ancestor controls before determining if it is
visible. It defaults to true.

On the client side, visibility is determined by the 'style.visibility ' and 'style.display' properties. The field is considered
invisible only when style.visibility = “hidden” or style.display = “none”.

On the server side, visibility is determined by looking in the Style property for control.Style[“Visibility”] = “hidden” or
control.Style[“Display”] = “none”. (These comparisons are case insensitive.)

When the Visible property on the ControlIDToEvaluate is false, the control is entirely turned off, generating no
HTML. So do not use the VisibleCondition to detect it. Instead, Validators and Conditions automatically turn themselves
off when the associated control has Visible=false.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 159 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Properties for EnabledCondition
The following list are properties specific to this Condition:

 ControlIDToEvaluate, ControlToEvaluate, and NotCondition – See “Properties Common to most Conditions”.

 IsEnabled (Boolean) – When true, the condition indicates success if the control determined by ControlIDToEvaluate
is enabled. When false, the condition indicates success when the control is disabled. It defaults to true.

Not all controls offer an enabled state on the client-side. Internet Explorer 6 supports this state on most of its controls.
Other browsers only support it on <input>, <select>, and <textarea> tags. When the browser doesn’t support
this state, this condition cannot evaluate on the client-side. However, the server-side always compares to the Enabled
property on the Control object.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 160 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Properties for ClassNameCondition
The following list are properties specific to this Condition:

 ControlIDToEvaluate, ControlToEvaluate, and NotCondition – See “Properties Common to most Conditions”.

 ClassName (string) – Performs a case insensitive match between this name and the current name for the style sheet class
used by the ControlIDToEvaluate. When it matches, the condition indicates success. It defaults to an empty string.

On the client-side, it looks at the attribute ‘className’ on the control. On the server-side it looks at the CssClass
property on WebControls and the Attributes[“Class”] on HtmlControls.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 161 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Properties for ReadOnlyCondition
The following list are properties specific to this Condition:

 ControlIDToEvaluate, ControlToEvaluate, and NotCondition – See “Properties Common to most Conditions”.

This condition only applies to TextBox and HtmlInputText controls. All other controls selected from
ControlIDToEvaluate cannot be evaluated.

 IsReadOnly (Boolean) – When true, the condition indicates success when the control is Read Only. When false, the
condition indicates success when the control is not ReadOnly. It defaults to false.

On the client-side, it evaluates the attribute ‘readonly’. On the server side, it evaluates the property ReadOnly on
TextBoxes and the Attributes[“readonly”] on HtmlInputText.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 162 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Properties for CompareToValueAttributeCondition
Use the CompareToValueAttributeCondition to compare a value that you supply to the value of any attribute or style on the
field identified by the ControlIDToEvaluate property. This is a power-users tool, letting you make decisions based on non-
data attributes of fields. You should use the preceding Non-Data Entry Conditions if they support the attribute you have in
mind.

While it can look at the values of any attribute or style, you must have some knowledge of the attributes and styles. Here are
some guidelines:

 You must supply the DOM or DHTML name of the property using the correct case. JavaScript is case sensitive to the
names. If the name you supply doesn’t exactly match an attribute name in the field, the client-side cannot evaluate and
CompareToValueAttributeCondition will act as if its disabled.

This link is to Microsoft’s online DHTML Reference: http://msdn2.microsoft.com/en-us/library/ms533050.aspx.
DHTML is used by Internet Explorer for Windows and Macintosh. As you read topics on each attribute and style, note
the section “Standards Information”. If it indicates support from the “World Wide Web Consortium”, it is supported by
most DOM browsers, including FireFox, Netscape 7+, Opera 7+, Safari, and Mozilla.

 If you intend to evaluate on the server side, the ControlToEvaluate must have its Attributes or Styles property
containing the name and value. If there is no value associated with the attribute name that you supply, the condition
cannot evaluate.

 You must identify the correct data type of the attribute from this list: string, integer, or boolean. If you supply an
incorrect data type, an exception may be thrown on either the client or server side. At minimum, the Condition will
evaluate incorrectly.

The following list are properties specific to this Condition:

 ControlIDToEvaluate, ControlToEvaluate, and NotCondition – See “Properties Common to most Conditions”.

 AttributeName (string) – The name of the attribute or style found on the control to evaluate.

On the server side, it is used in ControlToEvaluate.Attributes or ControlToEvaluate.Style collections. If these
collections do not contain the AttributeName, the condition will not evaluate on the server side.

On the client side, the name must be an attribute or style of the field. Otherwise, the client-side will not evaluate the
condition. Its up to you to identify the correct attribute and style names available to any browser. Browsers vary greatly,
offering many specialized attributes and styles. You can programmatically detect the browser with the TrueBrowser class
to determine the appropriate name.

Browsers are case sensitive to attribute and style names. When "", the condition cannot be evaluated. It defaults to "".

 Value (string) – The value that is compared to in the attribute or style. While it is a string here, it is converted to the data
type specified by the DataType property. It defaults to "". Booleans demand "true" or "false". Integers demand digits
and not to be blank.

 AttributeType (enum PeterBlum.DES.AttributeType) – Determines whether the AttributeName is an attribute or style
name. The enumerated type PeterBlum.DES.AttributeType has these values:

o Attribute – This is the default.

o Style

 DataType (enum PeterBlum.DES.AttributeDataType) – You must set this to be the data type that the DOM or DHTML
has defined for the attribute. This property is used to convert the string in AttributeValue. If you fail to correctly set it,
expect anything from incorrect evaluation to exceptions being thrown on the server side or JavaScript errors on the client
side. The enumerated type PeterBlum.DES.AttributeDataType as these values:

o String – AttributeValue can be any value, including blank. This is the default.

o Integer – AttributeValue must contain digits only. It cannot be blank.

o Boolean – AttributeValue must contain ‘false’ or ‘true’. It cannot be blank.

 Operator (enum PeterBlum.DES.ConditionOperator) – Determines how the attribute or style is compared to Value. The
enumerated type PeterBlum.DES.ConditionOperator has the following values:

http://msdn2.microsoft.com/en-us/library/ms533050.aspx�
http://msdn2.microsoft.com/en-us/library/ms533055.aspx�
http://msdn2.microsoft.com/en-us/library/ms537842.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 163 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

o Equal (This is the default.) ControlIDToEvaluate = Value

o NotEqual ControlIDToEvaluate <> Value

o GreaterThan ControlIDToEvaluate > Value

o GreaterThanEqual ControlIDToEvaluate >= Value

o LessThan ControlIDToEvaluate < Value

o LessThanEqual ControlIDToEvaluate <= Value

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 164 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Extending Existing Validators and Conditions
Sometimes you need to take advantage of a Validator or Condition class but modify its evaluation function. For example, you
want to use the SelectedIndexCondition, but always report “success” if the textual value of the selection contains a specific
phrase if the original evaluation method reports “failure”.

There are three approaches you can use:

 Subclass the object. This is the most powerful approach, allowing you to add new controls to the Visual Studio.net
toolbox, complete with new properties. Please see the Developer’s Kit for details.

 Combine a CustomCondition with existing Conditions using the MultiConditionValidator. This is the most common
approach since the MultiConditionValidator is so powerful. Design a Boolean expression consisting of Conditions from
various Validators. Create your own CustomCondition with the evaluation function for anything not already defined in
DES. For example, you want a Validator that requires text in a textbox and verifies its contents against a database. You
would use the logic: RequiredTextCondition AND CustomCondition, where the CustomCondition handles the database
query. See “MultiConditionValidator” and “CustomValidator”.

 Replace the evaluation functions in any existing Validator or Condition, potentially calling the original evaluation
function from your own. This technique is the topic of this section.

The CustomValidator and CustomCondition classes use the properties ServerCondition and CustomEvalFunctionName to
define their evaluation functions, on server and client-side respectively. These same properties are found on all Validator and
Condition classes, allowing you to treat them all as the basis for a custom Validator. This technique has two advantages over
CustomValidators and CustomConditions:

 You can continue to use the original evaluation function supplied by the class, simply by calling it from within your own
evaluation function.

 You can take advantage of the properties found on the class. For example, suppose your evaluation function will evaluate
the Checked property of a checkbox. If you start with the CheckedStateValidator, it offers this property. Now your
evaluation function can develop its own logic with access to the user’s setting for Checked and ControlIDToEvaluate.

Click on any of these topics to jump to them:

 Extending the Server Side

 Extending The Client-Side

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 165 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Extending the Server Side
Write your server-side evaluation method and attach it to the ServerCondition delegate. See “Server-Side Condition” for
setting up that method, taking into account the following details about the second parameter.

The second parameter passed to your evaluation method is one of these types:

 PeterBlum.DES.ConditionEventArgs – Includes IsMatch, CannotEvaluate, and Validator properties. Passed when
there is no ControlIDToEvaluate property on your Validator.

 PeterBlum.DES.ConditionOneFieldEventArgs – Includes IsMatch, CannotEvaluate, Validator, Value, and
ControlToEvaluate properties. Passed when there is a ControlIDToEvaluate property but no SecondIDToEvaluate
property on your Validator.

 PeterBlum.DES.ConditionTwoFieldEventArgs – Includes IsMatch, CannotEvaluate, Validator, Value,
ControlToEvaluate, SecondValue, and SecondControlToEvaluate properties. Passed when there are
ControlIDToEvaluate and SecondIDToEvaluate properties on your Validator.

If you want to call the original evaluation method from your method, call the condition’s EvaluateCondition()
method within your event handler.

The EvaluateCondition() method takes no parameters. It returns an integer with one of these values:

 1 – Evaluated successfully

 0 – Failed evaluation (error was detected)

 -1 – Cannot evaluate. The data was not set up in a way that the method could evaluate it at all.

This design allows you to call EvaluateCondition() in any order with your own condition logic: before, within, and
after. It also lets you take action based on either success or failure results. If you want to impose further limits on the
evaluation rules of the condition, test for 1 (success) and perform your own rules. If you want to loosen the limits of the
evaluation rules, test for 0 (failed) and perform your own rules on the same data.

This is an example where the EvaluateCondition() method is called before the custom logic. The custom logic is only
applied when the method returns 1 (success):

[C#]

 protected void MyCondition(BaseCondition sourceCondition,
 ConditionEventArgs args)
 {
 switch (sourceCondition.EvaluateCondition())
 {
 case 1: // success
 // your code goes here. Set args.IsMatch
 break;
 case 0: // failed
 args.IsMatch = false;
 break;
 case -1: // cannot evaluate
 args.CannotEvaluate = true;
 break;
 }
 } // MyCondition

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 166 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

[VB]

 Protected Sub MyCondition(ByVal sourceCondition As BaseCondition, _
 ByVal args As ConditionEventArgs)
 Select sourceCondition.EvaluateCondition()

 Case 1 ' success
 ' your code goes here. Set args.IsMatch
 Case 0 ' failed
 args.IsMatch = False
 Case -1 ' cannot evaluate
 args.CannotEvaluate = True
End Select

 End Sub ' MyCondition

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 167 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Extending The Client-Side
Write your client-side evaluation function in JavaScript and assign its name to the CustomEvalFunctionName property. See
“The Client-Side Evaluation Function” for details.

Your function is passed one parameter, cond, which is JavaScript object representing the Condition. The cond parameter will
have the property IDToEval only when the Validator has the ControlIDToEvaluate property. The IDToEval2 property will
only be available when the Validator has the SecondControlIDToEvaluate property.

If your function needs to call the original client-side evaluation function, you need to know the name of the original function.
It is found in the Condition’s GetClientSideEvalFunctionName() method. It is easiest if you write your client-side
code on the server side by building a string that you output using Page.RegisterClientScriptBlock(). The
function returned by GetClientSideEvalFunctionName() works exactly the way your own client-side evaluation
function works: it takes the cond parameter and returns 1 for success, 0 for failed, and -1 for cannot evaluate.

This example shows script created as a StringBuilder object and output. Its logic first calls the parent’s evaluation function. If
it returns 1 (for success), it continues with your own logic.

[C#]

System.Text.StringBuilder vScript = new System.Text.StringBuilder(500);
vScript.Append("<script type='text/javascript' language='JavaScript'><!--");
vScript.Append("function MyCond(cond)");
vScript.Append("{");
vScript.Append("var vResult = ");
vScript.Append(base.GetClientSideEvalFunctionName());
vScript.Append("(cond);");
vScript.Append("if (vResult == 1)");
vScript.Append("do your own evaluation here, setting vResult");
vScript.Append("return vResult;");
vScript.Append("}");
vScript.Append("-->");
vScript.Append("</script>");
Page.RegisterClientScriptBlock("MyCond", vScript.ToString());

[VB]

Dim vScript As System.Text.StringBuilder = New System.Text.StringBuilder(500)
vScript.Append("<script type='text/javascript' language='JavaScript'><!--")
vScript.Append("function MyCond(cond)")
vScript.Append("{")
vScript.Append("var vResult = ")
vScript.Append(base.GetClientSideEvalFunctionName())
vScript.Append("(cond);")
vScript.Append("if (vResult == 1)")
vScript.Append("do your own evaluation here, setting vResult")
vScript.Append("return vResult;")
vScript.Append("}")
vScript.Append("-->")
vScript.Append("</script>")
Page.RegisterClientScriptBlock("MyCond", vScript.ToString())

http://msdn2.microsoft.com/en-us/library/system.web.ui.page.registerclientscriptblock(vs.71).aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 168 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Defining the Error Message and Associated Labels
The Error Message communicates the problem found by the condition to the user. There are actually two error messages that
you can define per Validator. One appears directly on the Validator control through its ErrorFormatter property (see
“ErrorFormatters: Customizing the Appearance of the Error Message”). The other appears in the ValidationSummary control.
This allows you to provide a different level of details on each message, perhaps keeping the message next to the field shorter.

You set the ErrorMessage property on each Validator control to establish its error message. If you have a
ValidationSummary and want a different error message, also set the SummaryErrorMessage property. The
ValidationSummary uses the ErrorMessage property when SummaryErrorMessage is blank.

Error messages support tokens – terms embedded into brackets – which get replaced by properties or runtime values
determined when the condition is evaluated. This allows you to build standard messages where the programmer selects the
right message for the situation, complete with tokens, and it applies the properties and runtime values automatically. By
having runtime values, you can provide the user with specifics about what is wrong with their entry, such as the count of the
number of characters they typed and how much that exceeds your limits. There are tokens to show the labels of the controls.
They use the Label, SecondLabel, Label2, Label3 and Label4 properties to determine the text of the label.

The ErrorMessage and SummaryErrorMessage properties support the String Lookup System where enter your strings are
in a .resx file, database or other data source. Use it if you want to localize strings or develop a standardized collection of
messages. For example, you reuse the RequiredTextValidator with the message “This field requires a value.” If you put it
into the String Lookup System, programmers will no longer enter that string. They just enter a “Lookup ID”. That guarantees
that the exact same error message appears throughout the site. It also allows one person to maintain the actual text and update
all cases at once. See “String Lookup System” in the General Features Guide.

Click on any of these topics to jump to them:

 Properties for Error Messages

 Tokens in Error Messages

 Applying Styles To Tokens

Properties for Error Messages and Associated Labels
The Properties Editor includes a section titled “Error Messages” containing all of these properties.

 ErrorMessage (string) – The text that appears in the Validator control’s ErrorFormatter. If there is a
ValidationSummary control and the SummaryErrorMessage property is blank, this will be used in the
ValidationSummary as well.

Error messages can contain HTML tags. HTML lets you customize the appearance of the error message. However,
remember that when you set them up, they can appear in the ValidationSummary, tooltips, and alert boxes. You may
want different formatting the ValidationSummary control. Tooltips and alert boxes do not support HTML. The
ErrorFormatter property has a rich set of tools to customize the appearance of the ErrorMessage without embedding
HTML. You are strongly encouraged to use ErrorFormatters instead of embedded HTML. See “ErrorFormatters:
Customizing the Appearance of the Error Message”.

Note: If you want to show the characters “<”, “>” and “&”, be sure to type in “<”, “>” and “&”.
Alerts will automatically strip out any HTML tags.

Reminder: If your page should follow the XHTML standard, make sure your tags conform to XHTML.

Each Validator class supports some tokens, that are replaced at runtime, to allow standardized messages with variations
in the tokens or live data like the current text length in the TextLengthValidator’s ErrorMessage. See “Tokens in Error
Messages”.

Note: If you want to apply styles to any of the tokens in the ErrorMessage, use these properties on the
PeterBlum.DES.Globals.Page object: LabelTokenCssClass, PropertyTokenCssClass and RuntimeTokenCssClass.
See “Applying Styles To Tokens” for details.

The Properties Editor includes an editor on this property that gives you plenty of space to enter your message and offers
a way to quickly insert tokens from the context menu when you right-click on the textbox.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 169 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 ErrorMessageLookupID (string) – Gets the value for ErrorMessage through the String Lookup System. (See “String
Lookup System” in the General Features Guide.) The LookupID and its value should be defined within the String
Group of ErrorMessage. If no match is found OR this is blank, ErrorMessage will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 SummaryErrorMessage (string) – Supplies the error message for the ValidationSummary control and the alert shown
when using PeterBlum.DES.Globals.Page.ShowAlertOnSubmit. You can leave it blank if the value of ErrorMessage
is the message you want in the ValidationSummary and alert.

SummaryErrorMessage supports the same tokens and editor in the Properties Editor as ErrorMessage does.

Note: The SummaryErrorMessage property accepts HTML tags. If you want to show the characters “<”, “>” and
“&”, be sure to type in “<”, “>” and “&”. Alerts will automatically strip out any HTML tags.

Reminder: If your page should follow the XHTML standard, make sure your tags conform to XHTML.

Note: If you want to apply styles to any of the tokens in the SummaryErrorMessage, use these properties on the
PeterBlum.DES.Globals.Page object: SummaryLabelTokenCssClass, SummaryPropertyTokenCssClass and
SummaryRuntimeTokenCssClass. See “Applying Styles To Tokens” for details.

 SummaryErrorMessageLookupID (string) – Gets the value for SummaryErrorMessage through the String Lookup
System. (See “String Lookup System” in the General Features Guide.) The LookupID and its value should be
defined within the String Group of ErrorMessage. If no match is found OR this is blank, SummaryErrorMessage will
be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 170 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 Label (PeterBlum.DES.LabelText) – Provides text for the “{LABEL}” token that can appear in ErrorMessage and
SummaryErrorMessage properties. Use it to separate the label from your standardized and localized error messages.
This lets you use the same error message for differently named fields.

See “Properties of the PeterBlum.DES.LabelText Class”.

The Label property can also cause the Label control to change its style when an error is shown. Simply set either the
LabelControlID or LabelControl properties and set up the PeterBlum.DES.Globals.Page.HiliteFieldsNearbyError
property.

When defining properties of any Label property into ASP.NET, embed each within the beginning tag using the style
“LabelName-propertyname”. For example:

<des:CompareTwoFieldsValidator id="CompVal1" runat="server"
 Label-Text="Start Date" SecondLabel-LabelControlID="EndDateLabel"
 ControlIDToEvaluate="DateTextBox1" ControlIDToEvaluate="DateTextBox2"/>

 SecondLabel (PeterBlum.DES.LabelText) – Provides text for the “{LABEL2}” token that can appear in ErrorMessage
and SummaryErrorMessage properties. This property appears on controls with a SecondControlIDToEvaluate
property and should be used as a label for the control assigned to SecondControlIDToEvaluate.

See “Properties of the PeterBlum.DES.LabelText Class”.

The SecondLabel property can also cause the Label control to change its style when an error is shown. Simply set either
the LabelControlID or LabelControl properties and set up the
PeterBlum.DES.Globals.Page.HiliteFieldsNearbyError property.

When defining properties of any Label property into ASP.NET, embed each within the beginning tag using the style
“LabelName-propertyname”. For example:

<des:CompareTwoFieldsValidator id="CompVal1" runat="server"
 Label-Text="Start Date" SecondLabel-LabelControlID="EndDateLabel"
 ControlIDToEvaluate="DateTextBox1" ControlIDToEvaluate="DateTextBox2"/>

 Label2, Label3, and Label4 (PeterBlum.DES.LabelText) – Each of these is associated with the tokens “{LABEL2}”,
“{LABEL3}”, and “{LABEL4}” that you can insert into the ErrorMessage and SummaryErrorMessage on
MultiConditionValidator and CountTrueConditionsValidator. These two Validators do allow you to creatively define the
fields that they evaluate. So four Label properties are available to define up to four tokens. See the Label property above
for details on the PeterBlum.DES.LabelText class.

See “Properties of the PeterBlum.DES.LabelText Class”.

The Label property can also cause the Label control to change its style when an error is shown. Simply set either the
LabelControlID or LabelControl properties and set up the PeterBlum.DES.Globals.Page.HiliteFieldsNearbyError
property.

When defining properties of any Label property into ASP.NET, embed each within the beginning tag using the style
“LabelName-propertyname”. For example:

<des:MultiConditionValidator id="MSVal1" runat="server"
 Label-Text="First name" Label2-LabelControlID="LastNameLabel"
 [other properties] >

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 171 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Properties of the PeterBlum.DES.LabelText Class
The PeterBlum.DES.LabelText class provides several possible sources for the text and can alter the format by
changing case and stripping trailing characters like colon.

 LabelControlID (string) – If you have a System.Web.UI.WebControl.Label or DES’s LocalizableLabel
control on the page with the text that you want to show in the {LABEL} token, assign its ID here. You will be able to
use the Case and TrimTrailingSpaces properties to perform minor modifications to the text from this control.
Otherwise, consider using the Text property. It defaults to "".

 LabelControl (System.Web.UI.Control) – If you have a Label or LocalizableLabel control with the desired text but its
not in the same or an ancestor naming container, assign it to this property programmatically.

When programmatically assigning properties to a Validator control, if you have access to the Label control object, it is
better to assign it here than assign its ID to the LabelControlID property because DES operates faster using
LabelControl.

 Text (string) – If you don’t have the desired text available from a Label or LocalizableLabel control on the page, enter
the text here.

 TextLookupID (string) – Gets the value for Text through the String Lookup System. (See “String Lookup System” in
the General Features Guide.) The LookupID and its value should be defined within the String Group of Labels. If no
match is found OR this is blank, Text will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 Case (enum PeterBlum.DES.CaseConversion) – When the LabelControlID or LabelControl property is used, the text
may be correct except for the case. You can use this to adjust the case in these ways:

o None – no conversion. This is the default.

o Lowercase

o Uppercase

o SentenceCase – Only the first letter is capitalized

o TitleCase – The first letter of each word is capitalized

 TrimTrailingSymbol (Boolean) – When the LabelControlID or LabelControl property is used, the text many be
correct except for trailing spaces or a colon. When this is true, it removes all non-alphanumeric characters appearing at
the end of the text. For example, “Birthdate:” is converted to “Birthdate”. It defaults to false.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 172 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Tokens in Error Messages
For a demo, see http://www.peterblum.com/DES/DemoTokens.aspx.

Here are the tokens that can be entered into the ErrorMessage and SummaryErrorMessage properties.

Note: All tokens are case sensitive.

Click on any of these topics to jump to them:

 {NEWLINE}

 {LABEL}, {LABEL2}, {LABEL3}, and {LABEL4}

 {TEXTVALUE}, and {TEXTVALUE2}

 {MINIMUM} and {MAXIMUM}

 {VALUETOCOMPARE}

 {DIFFERENCEVALUE} and {DIFFRESULT}

 {COUNT} and {COUNT:singular:plural}

 {EXCEEDS} and {EXCEEDS:singular:plural}

 {UNWANTED}

{NEWLINE}

Supporting Validators: All

This is a special token that is replaced by the appropriate character or symbol to represent a linebreak. The same text from the
ErrorMessage and SummaryErrorMessages are used in several locations: the web page, alerts, and tooltips. The
{NEWLINE} token lets the web page use a “
” while alerts and tooltips use specific ASCII characters. Note: Only
Internet Explorer permits linebreaks in it’s tooltip. This token is replaced by a SPACE character on other browsers.

It is valid to use the HTML tag “
” directly in these properties. However, when used in an alert or tooltip, its simply
stripped out. The {NEWLINE} token assures that a linebreak will be used if possible.

Example

1. The date is incorrect{NEWLINE}2. The date must be later than July 1, 2003.

{LABEL}

Supporting Validators: All that use the ControlIDToEvaluate property and DuplicateEntryValidator

From: Server-side property

Uses the text from the Label property.

Example

The {LABEL} contains an invalid date.

{LABEL2}

Supporting Validators: All that use the SecondControlIDToEvaluate and Label2 property. Also DuplicateEntryValidator

From: Server-side property

Uses the text from the SecondLabel or Label2 property.

Example

{LABEL1} cannot differ from {LABEL2} by more than 100.

http://www.peterblum.com/DES/DemoTokens.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 173 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

{LABEL3}

Supporting Validators: All that use the Label3 property.

From: Server-side property

Uses the text from the Label3 property.

Example

{LABEL3} contains an error.

{LABEL4}

Supporting Validators: All that use the Label4 property.

From: Server-side property

Uses the text from the Label4 property.

Example

{LABEL4} has an invalid format.

{TEXTVALUE}

Supporting Validators: All that use the ControlIDToEvaluate property.

From: Runtime property

Retrieves the textual value of the control specified by ControlIDToEvaluate when the control is evaluated.

Example

The date you entered, {TEXTVALUE}, cannot be earlier than January 1, 2003.

{TEXTVALUE2}

Supporting Validators: All that use the SecondControlIDToEvaluate property.

From: Runtime property

Retrieves the textual value of the control specified by SecondControlIDToEvaluate when the control is evaluated.

Example

The value {TEXTVALUE2} must be less than {TEXTVALUE}.

{MINIMUM}

Supporting Validators: RangeValidator, TextLengthValidator, WordCountValidator, CountSelectionsValidator, and
CountTrueConditionsValidator.

From: Server-side property

Uses the value of the Minimum property.

Example

Please do not enter a value lower than {MINIMUM}.

{MAXIMUM}

Supporting Validators: RangeValidator, TextLengthValidator, WordCountValidator, CountSelectionsValidator, and
CountTrueConditionsValidator.

From: Server-side property

Uses the value of the Maximum property.

Example

You have exceeded the limit of {MAXIMUM} checkmarks.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 174 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

{VALUETOCOMPARE}

Supporting Validators: CompareToValueValidator

From: Server-side property

Use the value of the ValueToCompare property.

Example

{TEXTVALUE} exceeds {VALUETOCOMPARE}. Please reduce this value.

{DIFFERENCEVALUE}

Supporting Validators: DifferenceValidator

From: Server-side property

Uses the value of the DifferenceValue property.

Example

These dates should be no more than {DIFFERENCEVALUE} days apart.

{DIFFRESULT}

Supporting Validators: DifferenceValidator

From: Runtime property

Uses the difference calculated by the condition. It is a positive integer or decimal number.

Example

These dates should be no more than {DIFFERENCEVALUE} days apart. They are {DIFFRESULT} days apart now.

{COUNT}

Supporting Validators: TextLengthValidator, WordCountValidator, CountSelectionsValidator, and
CountTrueConditionsValidator.

From: Runtime property

Uses the count determined by the condition: number of characters, words, selections, or conditions, depending on the
Validator.

Example

You entered {COUNT} characters.

{COUNT:singular:plural}

Supporting Validators: TextLengthValidator, WordCountValidator, CountSelectionsValidator, and
CountTrueConditionsValidator.

From: Runtime property

Helps build sentences where singular and plural forms are needed when you use the {COUNT} token. For example, “There is
1 item.” and “There are 2 items.”

You replace the term “singular” with the singular form of the word. You replace the term “plural” with the plural form of the
word.

Example

You entered {COUNT} {COUNT:character:characters}.

You entered {COUNT} character{COUNT::s}.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 175 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

{EXCEEDS}

Supporting Validators: TextLengthValidator, WordCountValidator

From: Runtime property

How much the {COUNT} exceeds the minimum or maximum.

Example

You have entered {EXCEEDS} too many characters.

{EXCEEDS:singular:plural}

Supporting Validators: TextLengthValidator, WordCountValidator

From: Runtime property

Helps build sentences where singular and plural forms are needed when you use the {EXCEEDS} token. For example, “You
are over by 1 character.” and “You are over by 2 characters.”

You replace the term “singular” with the singular form of the word. You replace the term “plural” with the plural form of the
word.

Example

You are over by {EXCEEDS} {EXCEEDS:character:characters}.

You are over by {EXCEEDS} character{EXCEEDS::s}.

{UNWANTED}

Supporting Validators: UnwantedWordsValidator

From: Runtime property

The text found to be unwanted.

Example

Do not enter ‘{UNWANTED}’.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 176 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Applying Styles To Tokens
Tokens can be automatically assigned to a style sheet class to make their text stand out. There are three types of tokens for
which there are style sheet classes: labels, server side properties, and runtime properties.

The following are the predefined in the DES\Appearance\Validation\Validation.css style sheet file and used as defaults
in the properties shown below.

/* Property: PeterBlum.DES.Globals.Page.LabelTokenCssClass
{LABEL} tokens in the ErrorMessage
*/
.DESVALLabelToken
{
 font-weight:bold;
}

/* Property: PeterBlum.DES.Globals.Page.RuntimeTokenCssClass
Tokens showing runtime values, like {COUNT} and {TEXTVALUE} in the ErrorMessage
*/
.DESVALRuntimeToken
{
}

/* Property: PeterBlum.DES.Globals.Page.PropertyTokenCssClass
Tokens showing property values, like {MINIMUM} and {DIFFVALUE} in the ErrorMessage
*/
.DESVALPropertyToken
{
}

/* Property: PeterBlum.DES.Globals.Page.LabelTokenCssClass
{LABEL} tokens in the SummaryErrorMessage
*/
.DESVALSummaryLabelToken
{
 font-weight:bold;
}

/* Property: PeterBlum.DES.Globals.Page.RuntimeTokenCssClass
Tokens showing runtime values, like {COUNT} and {TEXTVALUE} in the
SummaryErrorMessage
*/
.DESVALSummaryRuntimeToken
{
}

/* Property: PeterBlum.DES.Globals.Page.PropertyTokenCssClass
Tokens showing property values, like {MINIMUM} and {DIFFVALUE} in the
SummaryErrorMessage
*/
.DESVALSummaryPropertyToken
{
}

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 177 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

You set up the class names on properties of PeterBlum.DES.Globals.Page, which are page specific, or globally using the
Global Settings Editor program.

You assign properties to PeterBlum.DES.Globals.Page programmatically in the Page_Load() method.

 LabelTokenCssClass (string) – The style sheet class name of tokens for Labels within the ErrorMessage property. No
style is applied when "".

In Global Settings Editor, the property is DefaultLabelTokenCssClass. It defaults to "DESVALLabelToken" and
is predefined in the DES\Appearance\Validation\Validation.css style sheet file as shown on the previous page.

Note: If you want to change the style of the label control itself, set up the Label property on the Validator to reference
the label. Then use the style sheet class defined by the PeterBlum.DES.Globals.Page.TextHiliteFieldsCssClass property
which defaults to “DESVALTextHiliteFields”.

 PropertyTokenCssClass (string) – The style sheet class name of tokens associated with server-side properties within
the ErrorMessage property. No style is applied when "".

In Global Settings Editor, the property is DefaultPropertyTokenCssClass. It defaults to
"DESVALPropertyToken" and is predefined in the DES\Appearance\Validation\Validation.css style sheet file
as shown on the previous page.

 RuntimeTokenCssClass (string) – The style sheet class name of tokens associated with runtime properties within the
ErrorMessage property. No style is applied when "".

In Global Settings Editor, the property is DefaultRuntimeTokenCssClass. It defaults to
"DESVALRuntimeToken" and is predefined in the DES\Appearance\Validation\Validation.css style sheet file
as shown on the previous page.

 SummaryLabelTokenCssClass (string) – The style sheet class name of tokens for Labels within the
SummaryErrorMessage property. No style is applied when "".

In Global Settings Editor, the property is DefaultSummaryLabelTokenCssClass. It defaults to
"DESVALSummaryLabelToken" and is predefined in the DES\Appearance\Validation\Validation.css style
sheet file as shown on the previous page.

 SummaryPropertyTokenCssClass (string) – The style sheet class name of tokens associated with server-side properties
within the SummaryErrorMessage property. No style is applied when "".

In Global Settings Editor, the property is DefaultSummaryPropertyTokenCssClass. It defaults to
"DESVALSummaryPropertyToken" and is predefined in the DES\Appearance\Validation\Validation.css style
sheet file as shown on the previous page.

 SummaryRuntimeTokenCssClass (string) – The style sheet class name of tokens associated with runtime properties
within the SummaryErrorMessage property. No style is applied when "".

In Global Settings Editor, the property is DefaultSummaryRuntimeTokenCssClass. It defaults to
"DESVALSummaryRuntimeToken" and is predefined in the DES\Appearance\Validation\Validation.css style
sheet file as shown on the previous page.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 178 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

ErrorFormatters: Customizing the Appearance of the Error Message
For a demo, see http://www.peterblum.com/DES/DemoErrorFormatter.aspx.

Validator Controls use ErrorFormatters to display the error message. An ErrorFormatter installs the HTML that formats the
error message in the same location as the Validator control is placed into your ASP.NET web form. That HTML can do
anything you want, including using JavaScript to make the message more interactive.

DES includes these ErrorFormatters:

 Text (PeterBlum.DES.TextErrorFormatter) – Displays the error message on the page, much like a Label control. It has
numerous style properties although using a style sheet class with its CssClass property is preferred. It supports optional
HTML text that encloses the error message, to customize its appearance. It can display an image to the left of the error
message. See “Text”.

 Hyperlink with Alert (PeterBlum.DES.HyperLinkErrorFormatter) – Displays a hyperlink with a short label that you
supply. When clicked, an alert appears with the error message. See “Hyperlink with Alert”.

 Image with Tooltip (PeterBlum.DES.TooltipImageErrorFormatter) – Displays an image. When the user points to it, a
tooltip shows the error message. See “Image with Tooltip”.

 Image with Alert (PeterBlum.DES.AlertImageErrorFormatter) – Displays an image. When the user clicks on it, an alert
appears with the error message. See “Image with Alert”.

 PopupView (PeterBlum.DES.PopupErrorFormatter) – Only show an image. When the user clicks on the image, show a
PopupView, which is a floating message. In addition, when focus moves into a control being evaluated, it automatically
pops up. See “PopupView”. ALERT: Requires a license that covers Peter’s More Validators.

Note: You can define other Error Formatters through subclassing. See the Developer’s Guide for details.

Click on any of these topics to jump to them:

 Using ErrorFormatters

 ErrorFormatter Skins

 Properties Common To All ErrorFormatter Classes

 Text (TextErrorFormatter)

 Using The TextErrorFormatter

 Properties for TextErrorFormatter (“Text”)

 Hyperlink with Alert(HyperLinkErrorFormatter)

 Using This ErrorFormatter

 Properties for HyperLinkErrorFormatter (“HyperLink with Alert”)

 Image with Tooltip (TooltipImageErrorFormatter)

 Using This ErrorFormatter

 Properties for TooltipImageErrorFormatter (“Image with ToolTip”)

 Image with Alert (AlertImageErrorFormatter)

 Using This ErrorFormatter

 Properties for AlertImageErrorFormatter (“Image with Alert”)

 PopupView (PopupErrorFormatter)

 Using This ErrorFormatter

 Properties for PopupErrorFormatter (“PopupView”)

 Working With PopupViews

http://www.peterblum.com/DES/DemoErrorFormatter.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 179 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Using ErrorFormatters
For a demo, see http://www.peterblum.com/DES/DemoErrorFormatter.aspx.

You set up an ErrorFormatter on the Validator’s ErrorFormatter property. The property holds an object, one of the
ErrorFormatter classes. It defaults to the TextErrorFormatter (“Text”). If that is the desired ErrorFormatter, assign the
properties of the TextErrorFormatter object.

Otherwise, assign the desired ErrorFormatter class to ErrorFormatter. Then assign its properties.

You can also predefine ErrorFormatters as “Skins”. These are globally defined ErrorFormatter objects that are given a unique
name. You assign the name to the Validator’s ErrorFormatterSkinID property. See “ErrorFormatter Skins”.

Name Class Example

Text TextErrorFormatter

Image with Alert AlertImageErrorFormatter

Image with Tooltip ToolTipImageErrorFormatter

Hyperlink with Alert HyperLinkErrorFormatter

PopupView PopupErrorFormatter

All Error Formatters supply HTML to the page. Before the error is detected, the HTML is invisible. Browsers permit
invisible HTML to take up space or not. Use the Display property to control the preferred appearance. When Static, it
takes up space. This is the default. When Dynamic, it uses no space until shown. You will find that when there are several
Validators associated with one control, the Dynamic setting works better. Note: The CombinedErrorMessages control also
helps reduce the space used by multiple Validators in one location. See “CombinedErrorMessages Control”.

If you want to show the error only in the ValidationSummary control when the page is submitted, set Display to None.

Click on any of these topics to jump to them:

 Setting the Appearance

 Editing the ErrorFormatter in Design Mode

 ASP.NET Declarative Syntax for the ErrorFormatter Property

 Creating an ErrorFormatter Programmatically

http://www.peterblum.com/DES/DemoErrorFormatter.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 180 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Setting the Appearance

ErrorFormatters provides most of the style properties found on any System.Web.UI.WebControls.WebControl
subclass like ForeColor and Font. DES recommends that you use style sheets and sets the CssClass property to
“DESVALErrorText”, a predefined style sheet class that sets the font to red. It is defined in the style sheet file
\DES\Appearance\Validation\Validation.css. You will find it easiest to edit the “DESVALErrorText” style instead
of all the properties here and such a change is global to your Validators. See step 1 of “Adding Validation to a WebForm”.

You can make your error blink on the page to get the user’s attention. See “Blinking the ErrorFormatter”.

When you choose a formatter with an image, the default image is this: . The file is located in [web application root]\
DES\Appearance\Validation\valerroricon.gif. You can set your own image with the ImageURL property. DES
supplies an animated GIF of the same image only it fades and returns. It is named “valerroricon_animated.GIF” in the
[web application root]\DES\Appearance\ folder.

When you place the Validator on the page, it is often right next to another field, such as the textbox. You can insert a
“ ” before it, but that character will not be hidden when the Validator is hidden. Use the GapBefore property to insert
a gap before the Validator that gets hidden.

For the remaining properties, see the topics on each ErrorFormatter class that follow.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 181 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Editing the ErrorFormatter in Design Mode

The Properties Editor provides an editor on the ErrorFormatter property where you can change both the type of
ErrorFormatter and its properties.

Start by selecting the type of ErrorFormatter you want from the ErrorFormatter field at the top of this window. Edit the
properties and click OK.

You can customize the list by editing properties with these buttons:

 Save – Writes the properties and ErrorFormatter class to the custom.des.config file. It first prompts for a name. If
you provide an existing name, you can overwrite that name. For example, if you use the name “Text”, the factory
defaults for the “Text” item in the list will now use the properties that you have supplied. However, any changes made to
the saved names will not be applied to any controls that you already have on the page. You will need to go to each
control and use the Revert button to change it to your new settings.

Each saved ErrorFormatter – called a “skin” to follow the terminology from ASP.NET 2.0’s “Themes and Skins” – is
available for assignment to the ErrorFormatterSkinID property. This lets you select global ErrorFormatter
configurations instead of having a fixed setup defined in the individual validator. A change to the skin will be reflected
on all validators that use the same skin in their ErrorFormatterSkinID properties. See “ErrorFormatter Skins”.

Note: DES writes all changes to the custom.des.config file.

 Revert – Use this when you want to restore to the default properties of the name in the list. Remember that the default
properties may be those you have previously stored with the Save button.

 Delete – Use this to remove the ErrorFormatter currently named in the DropDownList from DES. While you most likely
will use this to remove your own saved definitions, you can delete DES’s own definitions. That doesn’t mean the objects
are fully removed. They are simply no longer selectable in this interface. Any Validator that was associated with an Error
Formatter that you delete here will continue to use the Error Formatter.

Note: You can undelete DES’s own definitions. Open the custom.des.config file. Locate the <ErrorFormatters> section
and remove the node <ErrorFormatter name="name" enabled="false" />

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 182 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

ASP.NET Declarative Syntax for the ErrorFormatter Property

If you want to enter the ErrorFormatter property and its child properties into the web form using the HTML mode, there are
special considerations. The format is unusual, in part because the .Net framework doesn’t support changing the class of a
property (polymorphism) without an interesting hack.

Here is the RequiredTextValidator with the TextErrorFormatter and the Display property set to Dynamic.

<des:RequiredTextValidator id="RequiredTextValidator1" runat="server"
 ControlIDToEvaluate="TextBox1" ErrorMessage="This field is required" >

 <ErrorFormatterContainer>
 <des:TextErrorFormatter Display="Dynamic">
 </des:TextErrorFormatter>
 </ErrorFormatterContainer>

</des:RequiredTextValidator>

Notice that the ErrorFormatter property never appears as an attribute of the <des:RequiredTextValidator> tag.
Instead, the <ErrorFormatterContainer> tag is a child of the Validator control. That tag has no attributes. The child
to <ErrorFormatterContainer> defines the class, textual name and all properties of the ErrorFormatter:

<des:classname [all properties] />

 des:classname – Use “des:TextErrorFormatter”, “des:TooltipImageErrorFormatter”, “des:AlertImageErrorFormatter”,
“des:HyperLinkErrorFormatter”, “des:PopupErrorFormatter” or the namespace and class of other ErrorFormatters that
you made.

 [all properties] – Enter the properties into the tag the same way you do for any other control.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 183 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Creating an ErrorFormatter Programmatically

By default, the ErrorFormatter property contains a TextErrorFormatter. If you want to use it, typecast the
Validator.ErrorFormatter property to PeterBlum.DES.TextErrorFormatter and edit its properties.

To change the ErrorFormatter, use these steps:

1. Create a new instance of your selected ErrorFormatter object. ErrorFormatters have numerous constructors including one
with no parameters.

2. Assign the object to the ErrorFormatter property of the Validator control.

3. Assign any properties on your ErrorFormatter object.

Example

This example creates a TextErrorFormatter with the Display property set to Dynamic. It is assigned to the Validator Val1.

[C#]

PeterBlum.DES.TextErrorFormatter vEF = new TextErrorFormatter();
Val1.ErrorFormatter = vEF;
vEF.Display = PeterBlum.DES.ValidatorDisplay.Dynamic;

[VB]

Dim vEF As PeterBlum.DES.TextErrorFormatter = New TextErrorFormatter()
Val1.ErrorFormatter = vEF
vEF.Display = PeterBlum.DES.ValidatorDisplay.Dynamic

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 184 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

ErrorFormatter Skins
When you define an ErrorFormatter as described above, it becomes part of the individual Validator control. DES provides
“skins” – a term borrowed from ASP.NET 2.0’s “Themes and Skins” – to let you set up named templates for your
ErrorFormatters. You assign the name of a skin to the ErrorFormatterSkinID property and immediately that skin is used
instead of the settings directly in the ErrorFormatter property of the individual Validator. Any change to the skin definition
is applied to all Validators that have that skin name assigned to the ErrorFormatterSkinID property.

It is important to understand that once the ErrorFormatterSkinID property is assigned, it completely overrides the
ErrorFormatter property. If you are using the ErrorFormatterSkinID and want to make a change to the ErrorFormatter
property, you must clear the ErrorFormatterSkinID property to use the ErrorFormatter property settings.

Using ErrorFormatter Skins

Start by defining skins. They are ErrorFormatter objects with a name. They are either stored in the custom.des.config file
or created programmatically as the application starts up.

Click on any of these topics to jump to them:

 Defining a Skin in Design Mode

 Defining a Skin in a Text Editor

 Defining a Skin Programmatically

When skins are defined, each time your web application starts up, it will have a list of ErrorFormatters to choose from by a
name. The name is the SkinID. DES also predefines several skin names. See “Predefined Skins”.

You can assign the SkinID on an individual validator or for most of the validators on the page. You can also declare a
property list along with Skin to customize the skin on-the-fly.

Assigning to an individual Validator

Set the Validator’s ErrorFormatterSkinID property to the name of the skin. The name is case insensitive.

<des:validator id="validator1" runat="server" ErrorFormatterSkinID="SkinID" />

At this point, the ErrorFormatter property will be ignored as the skin will be used.

Using the skin on most of the Validators on the page

The page has a default SkinID. It is found in the DefaultErrorFormatterSkinID property on the PageManager control and
programmatically on PeterBlum.DES.Globals.Page. When set, any validator whose ErrorFormatterSkinID property
contains “{DEFAULT}” will use the default ErrorFormatterSkinID if it is assigned. (The validator will use its own
ErrorFormatter if the default is blank.)

<des:PageManager id="PageManager1" runat="server"
 DefaultErrorFormatterSkinID="SkinID" />

Because every validator’s ErrorFormatterSkinID defaults to “{DEFAULT}”, a change to the
DefaultErrorFormatterSkinID will immediately affect all validators, overriding their ErrorFormatter properties. For any
whose ErrorFormatter should be used, you must change the validator’s ErrorFormatterSkinID to "".

<des:validator id="validator1" runat="server" ErrorFormatterSkinID="" />

Customize the Skin on-the-fly

The ErrorFormatterSkinID and DefaultErrorFormatterSkinID allow you to add a list of properties that will override the
skin’s values. For example, you want to use the skin named “PopupRed” but demand the ErrorFormatter has its the Display
property set to “Dynamic”. The SkinID will have this text:

ErrorFormatterSkinID="PopupRed {Display='Dynamic'}"

The overall syntax is a space delimited list of PropertyName='value' pairs. The property name is case senstive. The value
must be in quotes (usually single quotes because the entire property is enclosed in double-quotes.)

ErrorFormatterSkinID="SkinID {PropertyName1='Value' PropertyName2='Value'}"

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 185 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Predefined Skins

DES already knows of several skins, which create the default version of each ErrorFormatter type unless you redefine it in
the custom.des.config file. The skin names and their ErrorFormatters are here:

Skin name ErrorFormatter type

“Text” TextErrorFormatter

“TextErrorFormatter” TextErrorFormatter

“Image with Alert Box” AlertImageErrorFormatter

“AlertImageErrorFormatter” AlertImageErrorFormatter

“Image with Tooltip” TooltipImageErrorFormatter

“TooltipImageErrorFormatter” TooltipImageErrorFormatter

“Hyperlink with Alert Box” HyperLinkErrorFormatter

“HyperLinkErrorFormatter” HyperLinkErrorFormatter

“PopupView” PopupErrorFormatter

“PopupErrorFormatter” PopupErrorFormatter

These are most effective when combined with the ability to customize the properties on the fly (see the previous topic).

For example:

ErrorFormatterSkinID="Text {Display='Dynamic'}"

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 186 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Defining a Skin in Design Mode

1. Open the Properties Editor window.

2. Click on the button in the ErrorFormatter property to open the ErrorFormatter dialog.

3. Set up this dialog with the desired ErrorFormatter class and property settings.

4. Click Save.

5. Enter the name of the skin and click OK. If you are changing an existing skin, enter the same name as the one you are
changing.

6. Click OK to dismiss the ErrorFormatter dialog.

Note: The skin has not been assigned to the Validator. Instead, the Validator now has the configuration you have set up. You
still need to assign the skin to the ErrorFormatterSkinID property.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 187 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Defining a Skin in a Text Editor

1. Open the custom.des.config file in a text editor. By default, it is located in the [web application]\DES folder.

2. Locate the <ErrorFormatters> section.

3. The syntax is:

 <ErrorFormatter name="[Skin name]" type="[ErrorFormatter class]">
 <Property name="[property name]" value="[value]" />
 <Property name="[property name]" value="[value]" />
 </ErrorFormatter>

The type attribute must reflect the full class name: PeterBlum.DES.TextErrorFormatter,
PeterBlum.DES.AlertImageErrorFormatter, PeterBlum.DES.TooltipImageErrorFormatter,
PeterBlum.DES.HyperLinkErrorFormatter, PeterBlum.DES.PopupErrorFormatter.

Every tag, attribute, type, and property name is case sensitive.

For example, the skin called “Fancy Text” which uses the TextErrorFormatter to change the style sheet using the
CssClass property looks like this:

 <ErrorFormatter name="Fancy Text" type="PeterBlum.DES.TextErrorFormatter">
 <Property name="CssClass" value="SuperClass" />
 </ErrorFormatter>

If you need to change a sub property of the Font property, use this syntax:

 <ErrorFormatter name="[Skin name]" type="[ErrorFormatter class]">
 <Property name="[property name]" value="[value]" />
 <Property name="[property name]" value="[value]" />
 <Object name="Font">
 <Property name="[property name]" value="[value]" />
 </Object>
 </ErrorFormatter>

For example:

 <ErrorFormatter name="Italic Error" type="PeterBlum.DES.TextErrorFormatter">
 <Object name="Font">
 <Property name="Italic" value="True" />
 </Object>
 </ErrorFormatter>

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 188 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Defining a Skin Programmatically

Skins are globally defined. ASP.NET has you setup global values in the Application_Start() method of the
Global.asax file. Follow these steps to add ErrorFormatters as skins programmatically.

1. Open the Global.asax file and locate the Application_Start() method.

2. Add this line:

[C#]

 PeterBlum.DES.ConfigFile.ConfigFileLoaded +=
 new PeterBlum.DES.ConfigFilesLoadedEventHandler(MyConfigFilesLoaded);

[VB]

 AddHandler PeterBlum.DES.ConfigFile.ConfigFileLoaded _
 AddressOf MyConfigFilesLoaded

3. Add this method to Global.asax:

[C#]

 protected void MyConfigFilesLoaded(PeterBlum.DES.ConfigFile pConfigFile)
 {
 }

[VB]

 Protected Sub MyConfigFilesLoaded(ByVal pConfigFile As PeterBlum.DES.ConfigFile)
 End Sub

4. Create your ErrorFormatter object in the MyConfigFilesLoaded() method then add it to
PeterBlum.DES.Globals.ErrorFormatters.Add(). The function takes two parameters: the skin name (a
string), and the ErrorFormatter instance.

Example

Adds a skin named “Popup to Left” that uses a PopupErrorFormatter whose PopupViewName is set to
“LtYellow_Small ToLeft”. The popupview name is assumed to be defined in the custom.des.config file.

[C#]

protected void MyConfigFilesLoaded(PeterBlum.DES.ConfigFile pConfigFile)
{
 PeterBlum.DES.PopupErrorFormatter vPEF =
 new PeterBlum.DES.PopupErrorFormatter();
 vPEF.PopupViewName = "LtYellow_Small ToLeft";
 PeterBlum.DES.Globals.ErrorFormatters.Add("Popup to Left", vPEF);
}

[VB]

Protected Sub MyConfigFilesLoaded(ByVal pConfigFile As PeterBlum.DES.ConfigFile)
 Dim vPEF As PeterBlum.DES.PopupErrorFormatter = _
 New PeterBlum.DES.PopupErrorFormatter()
 vPEF.PopupViewName = "LtYellow_Small ToLeft"
 PeterBlum.DES.Globals.ErrorFormatters.Add("Popup to Left", vPEF)
End Sub

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 189 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Properties Common To All ErrorFormatter Classes
These properties are shown on any ErrorFormatter. They handle much of the formatting. Typically you assign the Display
property and customize the style sheet associated with CssClass property.

For properties specific to each Errormatter Class, click on any of these topics to jump to them:

 Properties for TextErrorFormatter (“Text”)

 Properties for HyperLinkErrorFormatter (“HyperLink with Alert”)

 Properties for TooltipImageErrorFormatter (“Image with ToolTip”)

 Properties for AlertImageErrorFormatter (“Image with Alert”)

 Properties for PopupErrorFormatter (“PopupView”)

 Display (enum PeterBlum.DES.ValidatorDisplay) – Determines whether the error is visible at all and if so, does it take
up space on the page when its invisible. The enumerated type PeterBlum.DES.ValidatorDisplay has the
following values:

o None – The error message is not shown where the Validator control is located. There are several other ways to
show the error message without using up valuable space near the field that reflects the error. Use the
ValidationSummary control or show an alert box. See “Show an Alert”.

o Static – The error message will show where the Validator control is located. When invisible, it will still use
space on the page as if the error message was shown. When error messages use runtime tokens, like
“{COUNT}” and “{TEXTVALUE}”, the space may differ from the actual error message as those tokens are
replaced. This is the default.

This setting limits the amount of rearrangement that goes on when the error message appears.

o Dynamic – The error message will show where the Validator control is located. When invisible, it does not use
up any space on the page. This is a good choice when there are several Validator controls, side-by-side, because
when one appears, it will have a gap where other Validators are located before it.

This setting causes other elements on the page to move as the ErrorFormatter is shown and hidden.

 CssClass (string) – Gets and sets the class name used with the control. A style class can encompass all of the other
properties associated with styles here. So edit the style sheet file to update the look of all your Validators at once.

It defaults to “DESVALErrorText”.

The style is declared in DES\Appearance\Validation\Validation.css:

.DESVALErrorText
{
 color: Red;
}

 GapBefore (int) – When you place the Validator on the page, it is often right next to another field, such as the textbox.
You can insert a “ ” before it but that character will not be hidden when the Validator is hidden. Use this to insert
a gap before the Validator that gets hidden. This sets the number of characters or pixels that will form the gap, depending
on GapBeforeType. When 0, there is no gap. It defaults to 0.

 GapBeforeType (enum PeterBlum.DES.GapType) – Associated with GapBefore to determine if the number specified
is in characters or pixels. The enumerated type PeterBlum.DES.GapType has these values:

o Character – “ ” is used to form the gap

o Pixels – an with a stretched 1x1 pixel image is used to form the gap

 ControlStyle (System.Web.UI.Style) – Gets and sets the style of the ErrorFormatter. Programmers generally use this
property. It provides the internal storage for the remaining properties listed here.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.style.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 190 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 BackColor (System.Drawing.Color) – Gets and sets the background color. It defaults to Color.Empty.
Recommendation: Use style sheets through the CssClass property.

 BorderColor (System.Drawing.Color) – Gets and sets the border color, if a border is enabled with BorderStyle. It
defaults to Color.Empty. Recommendation: Use style sheets through the CssClass property.

 BorderStyle (System.Web.UI.WebControls.BorderStyle) – Gets and sets the style of the border. It defaults to
BorderStyle.None. Recommendation: Use style sheets through the CssClass property.

 BorderWidth (string) – Gets and sets the width of the border. See BorderWidth. Recommendation: Use style sheets
through the CssClass property.

 Font (System.Web.UI.WebControls.FontInfo) – Gets and sets numerous properties describing the font including the
family, size, italics, bold, and underline. See Font. Recommendation: Use style sheets through the CssClass property.

 ForeColor (System.Drawing.Color) – Gets and sets the font color. It defaults to Color.Empty. Recommendation: Use
style sheets through the CssClass property.

 Height (System.Web.UI.WebControls.Unit) – Gets and sets the height of the error message area. The default is
Unit.Empty. See Height. Recommendation: Use style sheets through the CssClass property.

 Width (System.Web.UI.WebControls.Unit) – Gets and sets the width of the error message area. The default is
Unit.Empty. See Width. Recommendation: Use style sheets through the CssClass property.

 EnclosedBy (enum PeterBlum.DES.EFEnclosedBy) – By default, the Validator is enclosed in a tag. When
using XHTML syntax, “block”-style tags like <div> and <table> are not allowed inside a tag. When you
use block style tags inside the ErrorMessage, HTMLBefore or HTMLAfter properties, set this to DIV to enclose the
Validator in a <div> tag. This enumerated type has these values:

o SPAN – Creates a tag. This is the default.

o DIV – Creates a <div> tag.

http://msdn2.microsoft.com/en-us/library/system.drawing.color.aspx�
http://msdn2.microsoft.com/en-us/library/system.drawing.color.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.borderstyle.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.style.borderwidth(vs.71).aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.fontinfo.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.style.font.aspx�
http://msdn2.microsoft.com/en-us/library/system.drawing.color.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.unit.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.style.height.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.unit.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.style.width.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 191 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Text
Class: PeterBlum.DES.TextErrorFormatter

The TextErrorFormatter class shows the error message as text on the form. It supports styles. It is similar to using the
System.Web.UI.WebControls.Label control to show text. It can optionally show an image to the left of the error
message and be wrapped in HTML to heavily customize its appearance.

Using The TextErrorFormatter

Generally you set the Display property and customize the style sheet class “DESVALErrorText” in
DES\Appearance\Validation\Validation.css:

.DESVALErrorText
{
 color: Red;
}

Tokens embedded in the error messages can have a different font style. See “Applying Styles To Tokens”.

Insert an image before the text with the ImageURL property. Use the associated properties ImageAlign and
GapAfterImage to perfect its appearance.

Use the HTMLBefore and HTMLAfter properties to insert HTML before and after the error message so that you can create
almost any appearance that you want.

Properties for TextErrorFormatter (“Text”)

Here are the properties for this class.

 Display, CssClass, GapBefore, GapBeforeType, ControlStyle, BackColor, BorderColor, BorderStyle,
BorderWidth, Font, ForeColor, Height, and Width – See “Properties Common To All ErrorFormatter Classes”.

 ImageURL (string) – An optional image that can appear to the left of the error message text. Provide a URL to an image
file. When "", no image is used. It defaults to "". If a tool tip is set up, it will appear when the user points to the image.

Use the token "{DEFAULT}" to use the global setting defined in the DefaultImageErrorFormatterImageURL
property of the Global Settings Editor.

Special Symbols for URLs

The “{APPEARANCE}” token will be replaced by the default path to the Appearance folder, which you defined as
you set up the web site.

Supports the use of the tilde (~) as the first character to be replaced by the virtual path to the web application.

Note: If you want to blink the image but not the text, set BlinkCssClass = "". See “Blinking the ErrorFormatter”.

 ImageAlign (enum System.Web.UI.WebControls.ImageAlign) – When using ImageURL, this aligns the image to the
error message text and the rest of the row. It defaults to ImageAlign.Middle.

 GapAfterImage (int) – When you use the ImageURL property, use this to establish a gap between the image and the
error message text. This sets the number of characters or pixels that will form the gap, depending on
GapAfterImageType. When 0, there is no gap. It defaults to 0.

 GapAfterImageType (enum PeterBlum.DES.GapType) – Associated with GapAfterImage to determine if the number
specified is in characters or pixels. The enumerated type PeterBlum.DES.GapType has these values:

o Character – “ ” is used to form the gap

o Pixels – an with a stretched 1x1 pixel image is used to form the gap

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebuiwebcontrolsimagealignclasstopic.asp�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 192 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 HTMLBefore (string) – Add HTML that appears before the error message and optional image. This gives great
flexibility in formatting, often avoiding having to build a new ErrorFormatter class. If the HTML needs ending tags after
the error message, use HTMLAfter.

When entering HTML directly into the ASP.NET page, be sure to enter any tags using “<” for “<” and “>” for “>”.
For example, “<i>” should become HTMLBefore="<i>".

Example

Suppose these formatting properties are set:

HTMLBefore = "<i>"
HTMLAfter = "</i>"
ImageURL = "/Images/Graphic.gif"

When the page is rendered to the browser, it will contain this HTML:

<i>[error message tags]</i>

Reminder: If your page should follow the XHTML standard, make sure your tags conform to XHTML.

 HTMLBeforeLookupID (string) – Gets the value for HTMLBefore through the String Lookup System. (See “String
Lookup System” in the General Features Guide.) The LookupID and its value should be defined within the String
Group of ValidationMisc. If no match is found OR this is blank, HTMLBefore will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 HTMLAfter (string) – Add HTML that appears after the error message. This gives great flexibility in formatting, often
avoiding having to build a new ErrorFormatter class.

When entering HTML directly into the ASP.NET page, be sure to enter any tags using “<” for “<” and “>” for “>”.
For example, “</i>” should become HTMLBefore="</i>".

Reminder: If your page should follow the XHTML standard, make sure your tags conform to XHTML.

 HTMLAfterLookupID (string) – Gets the value for HTMLAfter through the String Lookup System. (See “String
Lookup System” in the General Features Guide.) The LookupID and its value should be defined within the String
Group of ValidationMisc. If no match is found OR this is blank, HTMLAfter will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 ToolTip (string) – The tool tip that appears when the user points to the error message. It defaults to "".

 ToolTipLookupID (string) – Gets the value for ToolTip through the String Lookup System. (See “String Lookup
System” in the General Features Guide.) The LookupID and its value should be defined within the String Group of
Hints. If no match is found OR this is blank, ToolTip will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 193 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Hyperlink with Alert
Class: PeterBlum.DES.HyperLinkErrorFormatter

The HyperLinkErrorFormatter class shows a hyperlink. When the user clicks on the hyperlink, an alert shows the error
message. The hyperlink may be easier for users to understand so that they click on it to get the error. The text of the
hyperlink is static, so it can take up very little room on the page. The default text is “Explain”. This ErrorFormatter is based
on the TextErrorFormatter and inherits its capabilities to show an image and have HTML before and after the hyperlink.

 Suggestion: If you want to show an image where the user clicks to show an alert, use the “Image with Alert”.

Using This ErrorFormatter

Set the Display property. Assign the text for the hyperlink to HyperLinkText and its optional style sheet class to
HyperLinkCssClass.

A tooltip is recommended so that the user knows what to expect when they click. Set the ToolTip property. For example, use
“Show the error”.

You can add an image that appears to the left of the hyperlink with the ImageURL property.

This ErrorFormatter supports the PeterBlum.DES.Globals.Page.FocusAfterAlert property that sets focus to the field with the
error after the alert is dismissed.

Properties for HyperLinkErrorFormatter (“HyperLink with Alert”)

Here are the properties for this class.

 Display, CssClass, GapBefore, GapBeforeType, ControlStyle, BackColor, BorderColor, BorderStyle,
BorderWidth, Font, ForeColor, Height, and Width – See “Properties Common To All ErrorFormatter Classes”.

 ImageURL, ImageAlign, GapAfterImage, GapAfterImageAlign, HTMLBefore, HTMLBeforeLookupID,
HTMLAfter, HTMLAfterLookupID, ToolTip, and ToolTipLookupID – See “Properties for TextErrorFormatter
(“Text”)”.

 HyperLinkText (string) – The text label of the HyperLink. It defaults to “Explain”.

 HyperLinkTextLookupID (string) – Gets the value for HyperLinkText through the String Lookup System. (See
“String Lookup System” in the General Features Guide.) The LookupID and its value should be defined within the
String Group of ValidationMisc. If no match is found OR this is blank, HyperLinkText will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 HyperLinkCssClass (string) - A style sheet class name assigned to the HyperLink. When blank, the page’s style sheet
rules for hyperlinks are applied. It defaults to "".

When working with hyperlinks, here is how to set up the 4 states – normal, visited, hover, and active – in your style sheet
file.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 194 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

A.ClassName
{ attributes }
A.ClassName:link
{ attributes }
A.ClassName:active
{ attributes }
A.ClassName:hover
{ attributes }

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 195 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Image with Tooltip
Class: PeterBlum.DES.TooltipImageErrorFormatter

The TooltipImageErrorFormatter class shows an image. When the user points to the image, a tool tip exposes the error
message. This format usually takes up much less room than when text is shown directly on the page. DES supplies a default
image (shown below), but you can substitute your own.

Using This ErrorFormatter

Set the Display property. Set the image with the ImageURL property.

Properties for TooltipImageErrorFormatter (“Image with ToolTip”)

Here are the properties for this class.

 Display, CssClass, GapBefore, GapBeforeType, ControlStyle, BackColor, BorderColor, BorderStyle,
BorderWidth, Font, ForeColor, Height, and Width – See “Properties Common To All ErrorFormatter Classes”.

 ImageURL (string) – The URL to the image.

When assigned to “{DEFAULT}”, it retrieves a value from the global DefaultImageErrorFormatterImageURL
property that you set with the Global Settings Editor. By using the global value, your site will maintain a consistent
look and changes are applied in one place. You can also assign a URL directly to this property.

By default, the global setting DefaultImageErrorFormatterImageURL uses the URL
“{APPEARANCE}/Validation/ValErrorIcon.gif” which looks like this: . DES provides an animated
version of this image when you change to this URL:
“{APPEARANCE}/Validation/valerroricon_animated.GIF”

ImageURL defaults to “{DEFAULT}”.

Special Symbols for URLs

The “{APPEARANCE}” token will be replaced by the default path to the Appearance folder, which you defined as
you set up the web site.

Supports the use of the tilde (~) as the first character to be replaced by the virtual path to the web application.

 ImageAltText (string) – The alternative text displayed by the tag when it cannot load the image.

When assigned to “{DEFAULT}”, it retrieves a value from the global DefaultImageErrorFormatterImageAltText
property that you set with the Global Settings Editor. By using the global value, your site will maintain a consistent
look and changes are applied in one place.

By default, the global DefaultImageErrorFormatterImageAltText uses "".

ImageAltText defaults to “{DEFAULT}”.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 196 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Image with Alert
Class: PeterBlum.DES.AlertImageErrorFormatter

The AlertImageErrorFormatter class shows an image. When the user clicks on the image, an alert shows the error message.
The image has an optional tool tip to tell the user to “click for more details”. DES supplies a default image (shown below),
but you can substitute your own.

Using This ErrorFormatter

Set the Display property. Set the image with the ImageURL property. Set the optional tooltip with the ToolTip property.

This ErrorFormatter supports the PeterBlum.DES.Globals.Page.FocusAfterAlert property that sets focus to the field with the
error after the alert is dismissed.

Properties for AlertImageErrorFormatter (“Image with Alert”)

Here are the properties for this class.

 Display, CssClass, GapBefore, GapBeforeType, ControlStyle, BackColor, BorderColor, BorderStyle,
BorderWidth, Font, ForeColor, Height, and Width – See “Properties Common To All ErrorFormatter Classes”.

 ImageURL (string) – The URL to the image.

When assigned to “{DEFAULT}”, it retrieves a value from the global DefaultImageErrorFormatterImageURL
property that you set with the Global Settings Editor. By using the global value, your site will maintain a consistent
look and changes are applied in one place. You can also assign a URL directly to this property.

By default, the global setting DefaultImageErrorFormatterImageURL uses the URL
“{APPEARANCE}/Validation/ValErrorIcon.gif” which looks like this: . DES provides an animated
version of this image when you change to this URL:
“{APPEARANCE}/Validation/valerroricon_animated.GIF”

ImageURL defaults to “{DEFAULT}”.

Special Symbols for URLs

The “{APPEARANCE}” token will be replaced by the default path to the Appearance folder, which you defined as
you set up the web site.

Supports the use of the tilde (~) as the first character to be replaced by the virtual path to the web application.

 ImageAltText (string) – The alternative text displayed by the tag when it cannot load the image.

When assigned to “{DEFAULT}”, it retrieves a value from the global DefaultImageErrorFormatterImageAltText
property that you set with the Global Settings Editor. By using the global value, your site will maintain a consistent
look and changes are applied in one place.

By default, the global DefaultImageErrorFormatterImageAltText uses "".

ImageAltText defaults to “{DEFAULT}”.

 ToolTip (string) – The ToolTip that appears when the user points to the image. The purpose it to tell the user to click to
get the full message. It defaults to “Click here for details”.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 197 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 ToolTipLookupID (string) – Gets the value for ToolTip through the String Lookup System. (See “String Lookup
System” in the General Features Guide.) The LookupID and its value should be defined within the String Group of
Hints. If no match is found OR this is blank, ToolTip will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 198 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

PopupView
Class: PeterBlum.DES.PopupErrorFormatter

ALERT: Requires a license that covers Peter’s More Validators.

The PopupErrorFormatter class shows an image. When the user clicks on the image, a PopupView exposes the error
message. Optionally, it can popup simply by passing the mouse over the image. In addition, when focus enters the control, it
also opens the PopupView.

A PopupView is similar to a ToolTip, created with HTML and Javascript to float near the control. It can be dragged and
closed. It can be customized with style sheets, images, and settings using the Global Settings Editor. Shown here.

Using This ErrorFormatter

Set the Display property. Set the image with the ImageURL property. Set the PopupView definition in the
PopupViewName property. It will default to a global setting, DefaultErrorMessagePopupViewName.

To add, edit, rename and delete PopupView definitions, see “Working With PopupViews”.

If you are using the PopupView.HelpBehavior feature, set the appropriate text in the ErrorMessageHelp property.

By default, the PopupView appears when the mouse passes over the image. If you want to modify this behavior, use the
PopupOnMouseOver and PopupOnMouseOverDelay properties.

By default, the PopupView appears when focus is established on the control with the error. If you want to disable this
feature, set PopupOnFocus to false.

Properties for PopupErrorFormatter (“PopupView”)

Here are the properties for this class.

 Display, CssClass, GapBefore, GapBeforeType, ControlStyle, BackColor, BorderColor, BorderStyle,
BorderWidth, Font, ForeColor, Height, and Width – See “Properties Common To All ErrorFormatter Classes”.

 ImageURL (string) – The URL to the image.

When assigned to “{DEFAULT}”, it retrieves a value from the global DefaultImageErrorFormatterImageURL
property that you set with the Global Settings Editor. By using the global value, your site will maintain a consistent
look and changes are applied in one place. You can also assign a URL directly to this property.

By default, the global setting DefaultImageErrorFormatterImageURL uses the URL
“{APPEARANCE}/Validation/ValErrorIcon.gif” which looks like this: . DES provides an animated
version of this image when you change to this URL:
“{APPEARANCE}/Validation/valerroricon_animated.GIF”

ImageURL defaults to “{DEFAULT}”.

Special Symbols for URLs

The “{APPEARANCE}” token will be replaced by the default path to the Appearance folder, which you defined as
you set up the web site.

Supports the use of the tilde (~) as the first character to be replaced by the virtual path to the web application.

 ImageAltText (string) – The alternative text displayed by the tag when it cannot load the image.

When assigned to “{DEFAULT}”, it retrieves a value from the global DefaultImageErrorFormatterImageAltText
property that you set with the Global Settings Editor. By using the global value, your site will maintain a consistent
look and changes are applied in one place.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 199 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

By default, the global DefaultImageErrorFormatterImageAltText uses "".

ImageAltText defaults to “{DEFAULT}”.

 PopupViewName (string) – Determines which globally defined PopupView is used. Specify the name or use
"{DEFAULT}" to select the name defined globally. See “Working With PopupViews”.

Use the Global Settings Editor to edit PopupView definitions. See “Using the Global Settings Editor to define
PopupViews”.

Here are the predefined values:

LtRed-Small, LtRed-Medium, LtRed-Large.

All of these are light red (actually “mistyrose”. Their widths vary from 200px to 600px. The ToolTip definitions do not
have the callout feature enabled.

When "{DEFAULT}", it selects the name from the global setting DefaultErrorMessagePopupViewName, which is
defined in the Global Settings Editor.

When "", it uses the factory default PopupView, which is a light yellow style, Width=200px,
PopupView.HelpBehavior=ButtonAppends, and PopupView.DefaultPosition=BottomRightSidesAlign.

When the name is specified here is unknown, it also uses the factory default. This allows the software to operate if you
change the name of a global value and forget to change the name in this property.

It defaults to "{DEFAULT}".

 OverriddenPopupView (PeterBlum.DES.HintPopupView) – Overrides the value in PopupViewName with an instance
of your own PeterBlum.DES.ErrorMessagePopupView class to establish the appearance of the popup error
message box.

When null, PopupViewName is used.

When assigned, this property is used to establish the appearance of the popup hint message box. See “Properties for the
PeterBlum.DES.ErrorFormatterPopupView Class”.

It defaults to null.

If you want to start with one of the ErrorMessage PopupViews defined in the Global Settings Editor, use the
GlobalToOverriddenPopupView() method to set up OverriddenPopupView. Then edit the properties of
OverridePopupView to customize it. See the example below.

Example: Creating a PopupView

[C#]

PeterBlum.DES.ErrorMessagePopupView vPV = new ErrorMessagePopupView();
vPV.HelpBehavior = PeterBlum.DES.HelpBehavior.ButtonReplaces;
vPV.Width = new Unit("350px");
vPV.DefaultPosition = PeterBlum.DES.DefaultViewPosition.BottomCentered;
vErrorFormatter.OverriddenPopupView = vPV;

[VB]

Dim vPV As PeterBlum.DES.ErrorMessagePopupView = New ErrorMessagePopupView()
vPV.HelpBehavior = PeterBlum.DES.HelpBehavior.ButtonReplaces
vPV.Width = New Unit("350px")
vPV.DefaultPosition = PeterBlum.DES.DefaultViewPosition.BottomCentered
vErrorFormatter.OverriddenPopupView = vPV

Example: Using GlobalToOverriddenPopupView() method

The PopupErrorFormatter.GlobalToOverriddenPopupView() method populates the
OverriddenPopupView based on a PopupView defined in the Global Settings Editor. It has one parameter, the
name of the PopupView. It returns an instance of the PopupView, which you can edit. You don’t need to assign it to
OverriddenPopupView.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 200 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

[C#]

PeterBlum.DES.ErrorMessagePopupView vPV =
 vPopupErrorFormatter.GlobalToOverriddenPopupView("MyPopupView");
vPV.HelpBehavior = PeterBlum.DES.HelpBehavior.ButtonReplaces;
vPV.Width = new Unit("350px");
vPV.DefaultPosition = PeterBlum.DES.DefaultViewPosition.BottomCentered;

 [VB]

Dim vPV As PeterBlum.DES.ErrorMessagePopupView = _
 vPopupErrorFormatter.GlobalToOverriddenPopupView("MyPopupView")
vPV.HelpBehavior = PeterBlum.DES.HelpBehavior.ButtonReplaces
vPV.Width = New Unit("350px")
vPV.DefaultPosition = PeterBlum.DES.DefaultViewPosition.BottomCentered

 ErrorMessageHelp (string) – Provides data for use by the Help Button and other features on the PopupView. Its use
depends on the PopupView.HelpBehavior property. (The PopupView is determined by the PopupViewName
property.)

The PopupView has an optional Help button. When setup, the user can click it to bring up additional information, such
as a new page of help text.

Here is how to use the ErrorMessageHelp based on PopupView.HelpBehavior:

o None - Do not show a Help Button. The ErrorMessageHelp property is not used.

o ButtonAppends - Add the text from ErrorMessageHelp after the existing message. Use
PopupView.AppendHelpSeparator to separate the two parts. When clicked, the Help button disappears and
the message box is redrawn.

o ButtonReplaces - Replace the text in the message with the ErrorMessageHelp. When clicked, the Help
button disappears and the message box is redrawn.

o Title - The text appears in the header as the title. It replaces the PopupView.HeaderText. There is no Help
Button. If ErrorMessageHelp is blank, PopupView.HeaderText is used.

o Hyperlink - Provide a Hyperlink. The Help Info text will appear in the "{0}" token of
PopupView.HyperlinkUrlForHelpButton.

For example, the HyperlinkUrlForHelpButton property may be "{0}" and this property is the complete URL
"/helpfiles/helptopic1000.aspx".

Another example uses the token for just a querystring parameter, like this: HyperlinkUrlForHelpButton =
"/gethelp.aspx?topicid={0}" and this property contains the number of the ID.

o HyperlinkNewWindow - Provide a Hyperlink that opens a new window. The ErrorMessageHelp text will
appear in the “{0}” token of PopupView.HyperlinkUrlForHelpButton.

o ButtonRunsScript - Runs the script supplied in PopupView.ScriptForHelpButton. The
ErrorMessageHelp text will replace the token “{0}” in that script.

This defaults to "".

 ErrorMessageHelpLookupID (string) – Gets the value for ErrorMessageHelp through the String Lookup System.
(See “The String Lookup System” in the General Features Guide.) The LookupID and its value should be defined
within the String Group of ErrorMessages. If no match is found OR this is blank, ErrorMessageHelp will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 201 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 PopupOnMouseOver (Boolean) – When true, the user can point to the image. After a short delay, the PopupView
will automatically appear. It defaults to true.

The delay is defined in PopupOnMouseOverDelay.

It will popdown when:

o PopdownOnMouseExit is true and you move the mouse off the image.

o Focus is lost

o Another PopupView, whether a PopupErrorFormatter, Hint, or Extended Tooltip, appears.

 PopupOnMouseOverDelay (integer) - When PopupOnMouseOver is true, this is the time delay between when the
mouse moves over the image and the PopupView appears. The value is in milliseconds.

If 0, it pops up immediately.

If -1, it uses a global default from DefaultPopupOnMouseOverDelay, which defaults to 500 (.5 seconds). Change this
default in the Visual Effects section of the Global Settings Editor.

It defaults to -1.

 PopdownOnMouseExit (Boolean) – Determines if PopupOnMouseOver will pop down the PopupView once the
mouse moves off the error formatter.

It has no effect when PopupOnMouseOver is false.

When true, the PopupView will be hidden as the mouse moves off the error formatter.

When false, the PopupView remains visible when the mouse moves off the error formatter.

It defaults to false.

 PopupOnFocus (Boolean) – When true, if the focus enters any data entry control assigned to the validator. It pops
down when focus is lost.

It defaults to true.

 PopupOnFocusDelay (Integer) – When PopupOnFocus is true, this is the time delay between when the focus enters
the control and the PopupView appears.

The value is in milliseconds. If 0, it pops up immediately.

It defaults to 350 (>1/3 second).

 TargetControlID (string) – Specify the exact control which targets where the popup appears. If not specified, it uses the
last control it was assigned from the various ControlIDToEvaluate and SecondControlIDToEvaluate properties.

It defaults to "".

When the target control is not in the same naming container, assign the control reference programmatically to the
TargetControl property (below).

 TargetControl (Control) – A reference to the target control. It is an alternative to TargetControlID that allows the
control to be anywhere on the page instead of the same naming container as the Validator. You must assign it
programmatically.

When assigned, it overrides the value of TargetControlID.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 202 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Working With PopupViews
A PopupView is similar to a ToolTip, created with HTML and JavaScript to float near the control.

Click on any of these topics to jump to them:

 PopupView Features

 Using the Global Settings Editor to define PopupViews

 View an existing definition

 Fields on the Initial View

 Edit a definition

 Add a definition

 Rename a definition

 Delete a definition

 Creating your own Callouts

 Adding your own Callouts to the PopupView Definition

PopupView Features

 Create as many PopupView definitions as needed in the Global Settings Editor.

 Style sheets control much of the appearance, including colors, borders, and fonts. There are predefined style sheets with
yellow, red, blue and grey color schemes in the DES\Appearance\Interactive Pages\PopupErrorFormatter.css
style sheet file. The Global Settings Editor knows about these schemes so you only select a scheme instead of setting
up numerous properties.

 The triangular extension shown at the top of the PopupView is called a Callout. It is a gif image file with transparency.
The callout is optional. PopupViews can appear on any side of the textbox. When using callouts, there are images
pointing left, up, down, and right.

 It has an optional titlebar. The title bar can have a label, including unique text for each control from the
ErrorMessageHelp property. It also has an optional close box.

 It can be dragged to expose other controls that it is covering. While dragging, its opacity increases so the user can see
other controls under it.

 Opacity changes in other ways. There is a default maximum opacity, so you can always see through it slightly if desired.
If it is just shown or the mouse moves over it, it increases opacity to the maximum. After the mouse moves away, it
reduces to a more opaque state.

 It has a fixed width. Its height varies depending on the amount of text from the hint. There are predefined PopupViews
for a variety of widths to choose the best width for the given text.

 It supports the ErrorMessageHelp property from controls that use hints by showing a Help button (image or link).
When clicked, there are a number of things you can do.

o Switch the initial text to the text from the ErrorMessageHelp property, offering the user expanded directions.

o Run javascript that can use the text from ErrorMessageHelp to customize it

o Go to a URL with the text from the ErrorMessageHelp containing part or all of the URL. This is great for
opening a help page with a specific topic ID associated with the control.

 The PopupView can enclose the error message in HTML, such as for showing an image.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 203 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Using the Global Settings Editor to define PopupViews

PopupView definitions are created within the Global Settings Editor and stored in the custom.des.config file. Within
the Global Settings Editor, you can add, edit, rename, and delete definitions. In addition, you can choose one of your
PopupView definitions to be the default used when the token “{DEFAULT}” appears in a
PopupViewFormatter.PopupViewName property by setting its name in the DefaultErrorMessagePopupViewName
property.

Here is how to define PopupViews.

1. Open the Global Settings Editor.

It is available from the Windows Start menu, the Context menu and SmartTag on the PageManager control, and in the
[DES Product Folder].

2. Confirm that the custom.des.config file for your web application is loaded. If it is not, click the Open button
and select it.

3. Select the PopupView definitions used by PopupErrorFormatters
topic in the list on the left.

4. View, add, edit, rename or delete a PopupView definition, using the
topics below. See also “Properties for the
PeterBlum.DES.ErrorFormatterPopupView Class”.

5. Save the changes using the Save button.

6. If you have changed the name of an existing PopupView, review your
web forms in case the old name is in use. Correct those that need it.

Callout

Header/Title

Close Button

Footer

Help Button

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 204 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

View an existing definition

To view an existing definition, click on its name in the items below the PopupView definitions used by
PopupErrorFormatter topic heading. There are two views. The initial display shows the most common properties and
combines a number of properties for style sheets and callout images into a single Theme. Click the Advanced button to see a
Properties Editor with all available properties.

Fields on the Initial View

For details, see “Properties for the PeterBlum.DES.ErrorFormatterPopupView Class”.

 Theme – DES predefines style sheets and images that correspond to these colors: Light Red, Light Blue, Alice Blue,
Light Yellow, and Light Gray. When you pick one of these, the following PopupView class properties are changed:
CssClass, HeaderCssClass, BodyCssClass, FooterCssClass, CloseButtonCssClass, HelpButtonCssClass, and
CalloutUrlFolder. If it says Custom, then you have modified at least one of these properties in the Advanced view.

 Enable Callouts – Sets the PopupView.EnableCallouts property. Callouts are the triangles projecting out of the
PopupView to point it to the control with the hint. They are gif images stored in the folder defined by
PopupView.CalloutUrlFolder. Use the Advanced View to edit the CalloutUrlFolder property.

 Default position – Sets the PopupView.DefaultPosition property. Determines the default position when the popup view
appears. If there is not enough screen space to appear in the default position, DES will reposition it.

 Width – The width of the definition in pixels. Each definition has a fixed width (although its height can change). As a
result, you usually define several definitions with the same features, but varying the width.

 Help Behavior – Sets the PopupView.HelpBehavior property. Determines how the ErrorMessageHelp property on
each control behaves. In most, cases it adds the Help button and determines how it behaves. Here are its values:

o Not used – Do not use ErrorMessageHelp. Do not show a Help Button.

o Show a button that appends the help text – Use the Help Button. When clicked, redraw with
the ErrorMessageHelp text appended to the current text. The value of PopupView.AppendHelpSeparator is
inserted between the original hint and the text of ErrorMessageHelp.

o Show an ErrorMessageHelp that replaces the help text – Use the Help Button. When clicked,
redraw with the HintHelp text replacing the current text.

o Show the help text in the titlebar – The ErrorMessageHelp text appears in the header as the
title. It is used instead of the PopupView.HeaderText property value. There is no Help Button.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 205 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

o Show a button that hyperlinks – Use the Help Button that acts as a hyperlink. Define the URL in
the URL field. The ErrorMessageHelp text will appear in the “{0}” token.

o Show a button that hyperlinks using another window – Use the Help Button that acts as a
hyperlink which opens in a new window. Define the URL in the URL field. The ErrorMessageHelp text will
appear in the “{0}” token.

o Show a button that runs a script – Runs the script supplied in the Script field. The
ErrorMessageHelp text will replace the token “{0}” in that script.

 Help Button appearance – When Help Behavior specifies a Help button, you can use an image or text for that button.
DES predefines the image and makes it available as the first radio button. Otherwise, specify the text in the Text field
or the image’s URL in the ImageUrl field.

 Make Global Default – When clicked, this PopupView definition will become the default for all PopupErrorFormatters
whose PopupViewName property is “{DEFAULT}”. It updates the setting DefaultErrorFormatterPopupViewName
in the topic “ErrorFormatter Defaults” of the Global Settings Editor.

 Advanced – Switch to the Advanced view, where you have access to every PopupView property using a Properties
Editor.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 206 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Edit a definition

To edit a definition, click on its name in the items below the PopupView definitions used by PopupErrorFormatters topic
heading. Change the properties on either the default or Advanced view. You do not need to click anything to save your edits.
(You also cannot undo your edits without reloading the custom.des.config file.)

See “Fields on the Initial View”, above, and “Properties for the PeterBlum.DES.ErrorFormatterPopupView Class”.

Add a definition

To add a definition, click the Add button in the lower right corner of the window or right click on the PopupView
definitions used by PopupErrorFormatters topic and chose Add.

Use “Fields on the Initial View”, above, to fill in the window. When done, click Save.

It will automatically create a name for you based on the Theme and Width. See below to rename it.

Rename a definition

Click on the name of the PopupView definition in the list, or click the Rename button when viewing the definition.

Note: The Global Settings Editor will automatically rename definitions if it created the original name and you change either
the Theme or Width field.

Delete a definition

Click on the name of the PopupView definition in the list and click the Delete button at the bottom of the window.

Creating your own Callouts

The Callout is an image file. In fact, there are 4 of these image files, one for each direction: left, right, top, and bottom. They
have these characteristics:

 Use a gif file. Make all pixels “outside” of your image transparent.

 To make their borders merge with the box of the popup view, do not use a border where it intersects with the box. You
will also make the image slightly overlap the box with the CalloutLeftRightSize and CalloutTopBottomSize
properties.

 The Callout image is inset along the box as determined by the CalloutOffsetAlongSide property. In the above image,
CalloutOffsetAlongSide is set to 10 pixels.

 All four image files have a specific name: Left.gif, Right.gif, Top.gif, Bottom.gif. They all go into single folder whose
Url is specified in the CalloutUrlFolder.

Callout Image
20 pixels high

CalloutTopBottomSize.Height
is set to 19 to overlap

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 207 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Adding your own Callouts to the PopupView Definition

1. Create 4 callout image files, one for each direction.

 They must be named Left.gif, Right.gif, Top.gif, and Bottom.gif. Each points in the direction taken from the
filename.

 They all go in a single folder. The suggested containing folder is
[Web application root]/DES/Appearance/Shared/Callouts. However, any folder that is accessible to your
web application through a URL is acceptable.

 The Top and Bottom images should have identical dimensions to each other.

 The Left and Right images should have identical dimensions to each other.

2. In the PopupView definition, assign these properties:

 EnableCallout = true

 CalloutUrlFolder = the URL to the folder. If using the suggested path: “{APPEARANCE}/Shared/Callouts/your
foldername”.

The “{APPEARANCE}” token will be replaced by the default path to the Appearance folder, which you defined
as you set up the web site.

 CalloutLeftRightSize.Width = The width of the Left and Right images. To overlap the PopupView box, subtract 1.

 CalloutLeftRightSize.Height = The height of the Left and Right images.

 CalloutTopBottomSize.Width = The width of the Top and Bottom images.

 CalloutTopBottomSize.Height = The height of the Top and Bottom images. To overlap the PopupView box,
subtract 1.

 CalloutOffsetAlongSide = How many pixels to offset the image along the side of the PopupView box. It defaults to
10 pixels.

See “Callout Properties” for details.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 208 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Properties for the PeterBlum.DES.ErrorFormatterPopupView Class
The PeterBlum.DES.ErrorFormatterPopupView class contains a PopupView definition. You normally edit these
in the Global Settings Editor. You can also create them for use with the PopupErrorFormatter.OverriddenPopupView
property.

See “Working With PopupViews”.

Click on any of these topics to jump to them:

 Overall Appearance Properties

 Header Properties

 Body Properties

 Footer Properties

 Callout Properties

 Positioning Properties

 Other Properties

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 209 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Overall Appearance Properties
 CssClass (string) – The Cascading Style Sheet name that is applied to the overall control. Use to define the background

and border.

It defaults to “DES_PEFOverallLtRed”.

These styles are declared in DES/Appearance/Validation/PopupErrorFormatter.css:

.DES_PEFOverallLtRed
{
 border-right: black 1px solid;
 border-top: black 1px solid;
 border-left: black 1px solid;
 border-bottom: black 1px solid;
 font-family: Arial;
 font-size: 8pt;
 color: Black;
 background-color: #ffe4e1; /* mistyrose */
}
/* default font for all nested tables in the control */
.DES_PEFOverallLtRed TABLE
{
 font-family: Arial;
 font-size: 8pt;
}

/* prevent external img styles from affecting these styles */
.DES_PEFOverallLtRed img
{
 background-color:transparent;
 margin-left: 0px;
 margin-top: 0px;
 margin-bottom:0px;
 margin-right:0px;
}

In addition, the style sheet file contains these alternatives which just change the background-color attribute:

DES_PEFOverallLtRed

DES_PEFOverallLtBlue

DES_PEFOverallLtGray

 Width (System.Web.UI.WebControls.Unit) – The width of the PopupView (excluding any callouts). The width is a
fixed value. The height varies based on hint text.

Create different width PopupView definitions for any appearance you want.

It defaults to 200px.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 210 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Header Properties

 HeaderTitle (string) – Optional text shown in the header. It supports HTML.

When "", no title is offered. The header is hidden if also ShowCloseButton is false.

It defaults to "".

 HeaderTitleLookupID (string) – Gets the value for HeaderTitle through the String Lookup System. (See “String
Lookup System” in the General Features Guide.) The LookupID and its value should be defined within the String
Group of PopupViews. If no match is found OR this is blank, HeaderTitle will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 HeaderHorizontalAlign (enum System.Web.UI.WebControls.HorizontalAlign) – The alignment of contents of the
header.

It defaults to HorizontalAlign.Left.

 HeaderCssClass (string) – The Cascading Style Sheet name that is applied to the header.

It defaults to “DES_PEFHeaderLtRed”.

This style is declared in DES/Appearance/Validation/PopupErrorFormatter.css:

.DES_PEFHeaderLtRed
{
 background-color: #ffc1b9; /* darker version of mistyrose */
 font-size: 8pt;
/* add this if you allow dragging and want to emphasize that fact
 cursor: move;
*/
}

In addition, the style sheet file contains these alternatives which just change the background-color attribute:

DES_PEFHeaderLtYellow

DES_PEFHeaderLtBlue

DES_PEFHeaderLtGray

 ShowCloseButton (Boolean) – Show the Close button in the header, on the right side. It will use CloseButtonImageUrl
or CloseButtonText to determine its appearance. If CloseButtonImageUrl is assigned, an image is shown. If
CloseButtonImageUrl is "", a hyperlink is shown using the CloseButtonText.

It defaults to true.

 CloseButtonImageUrl (string) – The Url to an image for the Close Button.

If supplied, an image is shown with the tooltip and Image Alt= text from CloseButtonText.

It defaults to "{APPEARANCE}/Shared/CloseCmd.gif" ().

DES also includes this image: To use it, assign CloseButtonImageUrl to
"{APPEARANCE}/Shared/CloseCmd2.gif".

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.horizontalalign.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 211 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Special Symbols for URLs

The “{APPEARANCE}” token will be replaced by the default path to the Appearance folder, which you defined as
you set up the web site.

Supports the use of the tilde (~) as the first character to be replaced by the virtual path to the web application.

Images for Pressed and MouseOver Effects

You can have images for pressed and mouseover effects as well as the normal image. The names of the image files
determine their purpose. Define the name of the normal image. For example, “myimage.gif”. Create the pressed version
and give it the same name, with “Pressed” added before the extension. For example, “myimagepressed.gif”. Create the
mouseover version and give it the same name, with “MouseOver” added before the extension. For example,
myimagemouseover.gif.

The CloseButtonImageUrl property should refer to the normal image. DES will detect the presence of the other two
files. If any are missing, DES continues to use the normal image for that case. Note: Auto detection only works when the
URL is a virtual path to a file. You can manage this capability with the
PeterBlum.DES.Globals.Page.EnableButtonImageEffects.

If you need more control over paths for pressed and mouseover images, you can embed up to 3 URLs into this property
using a pipe (|) delimited list. The order is important: normal|pressed|mouseover. If you want to omit the
pressed image, use: normal||mouseover. If you want to omit the mouseover image, use: normal|pressed.

 CloseButtonText (string) – The text for the Close Button. When CloseButtonImageUrl is used, this is the alternative
text for the image.

When CloseButtonImageUrl is "", this is the text of a hyperlink.

It defaults to "[x]".

 CloseButtonTextLookupID (string) – Gets the value for CloseButtonText through the String Lookup System. (See
“String Lookup System” in the General Features Guide.) The LookupID and its value should be defined within the
String Group of PopupViews. If no match is found OR this is blank, CloseButtonText will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 212 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 CloseButtonCssClass (string) – The Cascading Style Sheet name that is applied to the Close Button in the header.

You can define pressed and mouseover styles by using the same style sheet class name plus the text “Pressed” or
“MouseOver”. These styles will merge with the style sheet class defined here. So any properties in the pressed and
mouseover classes will overrided properties in this, but not the entire style.

If blank, it is not used.

It defaults to “DES_CloseButtonLtRed”.

These styles are declared in DES/Appearance/Validation/PopupErrorFormatter.css:

.DES_CloseButtonLtRed
{
 cursor: default;
 color: #696969; /* dimgray */
 font-size:8pt;
 background-color:White;
}
.DES_CloseButtonLtRedPressed
{
 color: black;
}
.DES_CloseButtonLtRedMouseOver
{
 color: #a9a9a9; /* darkgray */
}

In addition, the style sheet file contains these alternatives (which have identical attributes but are selected depending to
the desired color scheme):

DES_PEFCloseButtonLtYellow

DES_PEFCloseButtonLtBlue

DES_PEFCloseButtonLtGray

 CloseButtonToolTip (string) – The ToolTip for the Close button.

It defaults to “Close”.

 CloseButtonToolTipLookupID (string) – Gets the value for CloseButtonToolTip through the String Lookup System.
(See “String Lookup System” in the General Features Guide.) The LookupID and its value should be defined within
the String Group of PopupViews. If no match is found OR this is blank, CloseButtonToolTip will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 213 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Body Properties

 BodyCssClass (string) – The style sheet class name used for the body. It contains the text of the hint, so use it to
establish the font of the hint and margins around that text.

It defaults to “DES_PEFBodyLtRed”.

These styles are declared in DES/Appearance/Validation/PopupErrorFormatter.css:

.DES_PEFBodyLtRed
{
 cursor: default;
 margin-left: 5px;
 margin-right: 5px;
 margin-bottom: 5px;
}

/* when using HelpBehavior=ButtonAppend, the HelpSeparator
may contain an <hr> tag. This helps set its style. */
.DES_PEFBodyLtRed hr
{
}

In addition, the style sheet file contains these alternatives (which have identical attributes but are selected depending to
the desired color scheme):

DES_PEFBodyLtYellow

DES_PEFBodyLtBlue

DES_PEFBodyLtGray

 BodyImageUrl (string) – The Url to an image that appears to the left of the message text in the body.

If supplied, it appears to the left of the message text using a two column table. Use BodyImageVerticalAlign to
determine how the image is positioned within its table cell.

There is a global default in the DefaultErrorMessagePopupViewBodyImageUrl property of the Global Settings
Editor. Assign BodyImageUrl to “{DEFAULT}” to use the global default. It has the default value of
“{APPEARANCE}/Validation/BigValErrorIcon.GIF”. DES supplies these image files in the
[WebApplicationRoot]\DES\Appearance\Validation folder that are useful here:

 ValErrorIcon.GIF

 (animated) ValErrorIcon_animated.GIF

 ValErrorIcon.GIF (from the AJAX Control Toolkit)

BigValErrorIcon.GIF (This is the default.)

 (animated)
BigValErrorIcon_animated.GIF

BigValErrorIcon2.GIF

It defaults to "{DEFAULT}".

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 214 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Special Symbols for URLs

The “{APPEARANCE}” token will be replaced by the default path to the Appearance folder, which you defined as
you set up the web site.

Supports the use of the tilde (~) as the first character to be replaced by the virtual path to the web application.

Images for Pressed and MouseOver Effects

You can have images for pressed and mouseover effects as well as the normal image. The names of the image files
determine their purpose. Define the name of the normal image. For example, “myimage.gif”. Create the pressed version
and give it the same name, with “Pressed” added before the extension. For example, “myimagepressed.gif”. Create the
mouseover version and give it the same name, with “MouseOver” added before the extension. For example,
myimagemouseover.gif.

The BodyImageUrl property should refer to the normal image. DES will detect the presence of the other two files. If any
are missing, DES continues to use the normal image for that case. Note: Auto detection only works when the URL is a
virtual path to a file. You can manage this capability with the PeterBlum.DES.Globals.Page.EnableButtonImageEffects.

If you need more control over paths for pressed and mouseover images, you can embed up to 3 URLs into this property
using a pipe (|) delimited list. The order is important: normal|pressed|mouseover. If you want to omit the
pressed image, use: normal||mouseover. If you want to omit the mouseover image, use: normal|pressed.

 BodyImageVerticalAlign (enum System.Web.UI.WebControls.VerticalAlign) – The vertical alignment of the image
identified by BodyImageUrl.

It defaults to VerticalAlign.Top

 HTMLBefore (string) – Include HTML that appears before the hint text.

It defaults to ""

 HTMLBeforeLookupID (string) – Gets the value for HTMLBefore through the String Lookup System. (See “String
Lookup System” in the General Features Guide.) The LookupID and its value should be defined within the String
Group of PopupViews. If no match is found OR this is blank, HTMLBefore will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 HTMLAfter (string) – Include HTML that appears after the hint text.

It defaults to ""

 HTMLAfterLookupID (string) – Gets the value for HTMLAfter through the String Lookup System. (See “String
Lookup System” in the General Features Guide.) The LookupID and its value should be defined within the String
Group of PopupViews. If no match is found OR this is blank, HTMLAfter will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 215 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Footer Properties

 HelpButtonImageUrl (string) – The Url to an image for the Help Button.

If supplied, an image is shown with the image’s Alt= text from HelpButtonText.

It defaults to "". DES includes a Help button image in “{APPEARANCE}/Shared/HelpCmd.gif" ().

Special Symbols for URLs

The “{APPEARANCE}” token will be replaced by the default path to the Appearance folder, which you defined as
you set up the web site.

Supports the use of the tilde (~) as the first character to be replaced by the virtual path to the web application.

Images for Pressed and MouseOver Effects

You can have images for pressed and mouseover effects as well as the normal image. The names of the image files
determine their purpose. Define the name of the normal image. For example, “myimage.gif”. Create the pressed version
and give it the same name, with “Pressed” added before the extension. For example, “myimagepressed.gif”. Create the
mouseover version and give it the same name, with “MouseOver” added before the extension. For example,
myimagemouseover.gif.

If you need more control over paths for pressed and mouseover images, you can embed up to 3 URLs into this property
using a pipe (|) delimited list. The order is important: normal|pressed|mouseover. If you want to omit the
pressed image, use: normal||mouseover. If you want to omit the mouseover image, use: normal|pressed.

 The HelpButtonImageUrl property should refer to the normal image. DES will detect the presence of the other two
files. If any are missing, DES continues to use the normal image for that case. Note: Auto detection only works when the
URL is a virtual path to a file. You can manage this capability with the
PeterBlum.DES.Globals.Page.EnableButtonImageEffects.

 HelpButtonText (string) – The text for the Help Button. When HelpButtonImageUrl is used, this is the alternative text
for the image.

When HelpButtonImageUrl is "", this is the text of a hyperlink.

It defaults to "More".

 HelpButtonTextLookupID (string) – Gets the value for HelpButtonText through the String Lookup System. (See
“String Lookup System” in the General Features Guide.) The LookupID and its value should be defined within the
String Group of PopupViews. If no match is found OR this is blank, HelpButtonText will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 HelpButtonCssClass (string) – The Cascading Style Sheet name that is applied to the Help Button in the footer.

You can define pressed and mouseover styles by using the same style sheet class name plus the text “Pressed” or
“MouseOver”. These styles will merge with the style sheet class defined here. So any properties in the pressed and
mouseover classes will overrided properties in this, but not the entire style.

If blank, it is not used.

It defaults to “DES_PEFHelpButtonLtRed”.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 216 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

These styles are declared in DES/Appearance/Validation/PopupErrorFormatter.css:

.DES_PEFHelpButtonLtRed
{
 cursor: default;
 color: #696969; /* dimgray */
 font-size:8pt;
 text-decoration:underline;
}
.DES_PEFHelpButtonLtRedPressed
{
 color: black;
 text-decoration:underline;
}
.DES_PEFHelpButtonLtRedMouseOver
{
 color: #a9a9a9; /* darkgray */
 text-decoration:underline;
}

In addition, the style sheet file contains these alternatives (which have identical attributes but are selected depending to
the desired color scheme):

DES_PEFHelpButtonLtYellow

DES_PEFHelpButtonLtBlue

DES_PEFHelpButtonLtGray

 FooterCssClass (string) – The Cascading Style Sheet name that is applied to the footer.

It defaults to “DES_PEFFooterLtRed”.

This style is declared in DES/Appearance/Validation/PopupErrorFormatter.css:

.DES_PEFFooterLtRed
{
}

In addition, the style sheet file contains these alternatives which just change the background-color attribute:

DES_PEFFooterLtYellow

DES_PEFFooterLtBlue

DES_PEFFooterLtGray

 FooterHorizontalAlign (string) – (enum System.Web.UI.WebControls.HorizontalAlign) – The alignment of contents of
the footer.

It defaults to HorizontalAlign.Right.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.horizontalalign.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 217 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Callout Properties
See “Creating your own Callouts” and “Adding your own Callouts to the PopupView Definition”.

 EnableCallouts (Boolean) – When true, the callout graphics are added. Only one appears at a time, based on the
positioning of the messagebox.

A callout is a graphic inserted between the positioning control and the PopupView to make the entire presentation look
like a callout in a cartoon.

Requires CalloutUrls and CalloutOffsets to be defined.

NOTE: When set, the UseShadowEffect property is ignored because it generates a poor appearance with callouts.

It defaults to true.

 CalloutUrlFolder (string) – The URL to folder that contains four image files for the callouts. The files must be
transparent gifs with the names: Left.gif, Top.gif, Right.gif, and Bottom.gif.

There are several predefined callout folders, each with a set of images that work together with the predefined style sheets
in DES/Appearance/Validation/PopupErrorFormatter.css. They are:

{APPEARANCE}/Shared/Callouts/AliceBlue
{APPEARANCE}/Shared/Callouts/LtRed
{APPEARANCE}/Shared/Callouts/LtBlue
{APPEARANCE}/Shared/Callouts/LtRed
{APPEARANCE}/Shared/Callouts/LtGray
{APPEARANCE}/Shared/Callouts/Mistyrose

If you define your own, images use transparency and must be a gif file format. See “Creating your own Callouts”.

Always define the size of these images using CalloutTopBottomSize and CalloutLeftRightSize. The sizes of the
predefine callout files predefined in these properties: 20 tall and 12 wide.

It defaults to “{APPEARANCE}/Shared/Callouts/LtMistyRose” which has these images:

Special Symbols for URLs

The “{APPEARANCE}” token will be replaced by the default path to the Appearance folder, which you defined as
you set up the web site.

Supports the use of the tilde (~) as the first character to be replaced by the virtual path to the web application.

 CalloutLeftRightSize (System.Drawing.Size) – The actual width and height of the Left.gif and Right.gif images defined
in CalloutUrlFolder. It is used in positioning the PopupView box. As a result, if its slightly larger, the entire callout will
be moved away from the target. If its smaller, it will overlap the PopupView box.

If you have a border around the PopupView box and the outside edges of the callout, subtract the number of pixels used
to make the border.

It defaults to Width=19 and Height=12.

http://msdn2.microsoft.com/en-us/library/system.drawing.size.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 218 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 CalloutTopBottomSize (System.Drawing.Size) – The actual width and height of the Top.gif and Bottom.gif images
defined in CalloutUrlFolder. It is used in positioning the PopupView box. As a result, if its slightly larger, the entire
callout will be moved away from the target. If its smaller, it will overlap the PopupView box.

If you have a border around the PopupView box and the outside edges of the callout, subtract the number of pixels used
to make the border.

It defaults to Width=12 and Height=19.

 CalloutOffsetIntoAnchorPercent (integer) – Determines how much to offset the callout into the body of the anchor
control - the control that the callout points to. It is a percentage where 0 is the top or left and 100 is the bottom or right.

Generally avoid using values near 100 as the callout may exceed the boundaries of the PopupView.

It defaults to 50 (percent).

 CalloutOffsetAlongSide (integer) – Determines the minimum offset for the callout from the nearest corner so it is not
flush with that corner. The value is in pixels.

It defaults to 10 (pixels).

http://msdn2.microsoft.com/en-us/library/system.drawing.size.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 219 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Positioning Properties
 DefaultPosition (enum PeterBlum.DES.PopupViewPosition) – Positions the PopupView relative to the target control.

At runtime, the position may change if the PopupView either overlaps the target control or the limits of the viewable
space.

Use HorizPositionOffset and VerticalPositionOffset to offset from the selected position by a specific number of pixels.

The enumerated type PeterBlum.DES.PopupViewPosition has these values:

o LeftCentered - Horizontal alignment: Left of the target. Vertical alignment: Centered

o LeftTopsAlign - Horizontal alignment: Left of the target. Vertical alignment: top of target aligns with top
of popup view

o RightCentered - Horizontal alignment: Right of the target. Vertical alignment: Centered

o RightTopsAlign - Horizontal alignment: Right of the target. Vertical alignment: top of target aligns with
top of popup view

o BottomCentered - Horizontal alignment: Centered. Vertical alignment: Below the target

o BottomLeftSidesAlign - Horizontal alignment: Left sides of popup and target align. Vertical alignment:
Below the target

o BottomRightSidesAlign - Horizontal alignment: Right sides of popup and target align. Vertical
alignment: Below the target

o TopCentered - Horizontal alignment: Centered. Vertical alignment: Above the target

o TopLeftSidesAlign - Horizontal alignment: Left sides of popup and target align. Vertical alignment:
Above the target

o TopRightSidesAlign - Horizontal alignment: Right sides of popup and target align. Vertical alignment:
Above the target

It defaults to PopupViewPosition.BottomRightSidesAlign.

 HorizPositionOffset (short) – Adjusts the Horizontal position of the popup by a number of pixels to allow more precise
positioning for DefaultPosition.

If negative, the popup panel moves left. Positive moves right. Zero does nothing.

It defaults to 5.

 VertPositionOffset (short) – Adjusts the vertical position of the popup by a number of pixels to allow more precise
positioning for DefaultPosition.

If negative, the popup panel moves up. Positive moves down. Zero does nothing.

It defaults to 5.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 220 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Other Properties
 HelpBehavior (enum PeterBlum.DES.HelpBehavior) – Determines how the ErrorMessageHelp property (on the

control with the hint) is used.

The enumerated type PeterBlum.DES.HelpBehavior has these values:

o None – Do not use ErrorMessageHelp. Do not show a Help Button.

o ButtonAppends – Use the Help Button. When clicked, redraw with the ErrorMessageHelp text appended
to the current text. The value of PopupView.AppendHelpSeparator is inserted between the original hint and
the text of ErrorMessageHelp.

o ButtonReplaces – Use the Help Button. When clicked, redraw with the ErrorMessageHelp text replacing
the current text.

o Title – The ErrorMessageHelp text appears in the header as the title. It is used instead of the
PopupView.HeaderText property value. There is no Help Button.

o Hyperlink – Use the Help Button that acts as a hyperlink. Define the URL in the
HyperlinkUrlForHelpButton property. The ErrorMessageHelp text will appear in the “{0}” token.

o HyperlinkNewWindow – Use the Help Button that acts as a hyperlink which opens in a new window.
Define the URL in the HyperlinkUrlForHelpButton property. The ErrorMessageHelp text will appear in the
“{0}” token.

o Script – Runs the script supplied in the ScriptForHelpButton property. The ErrorMessageHelp text will
replace the token “{0}” in that script.

It defaults to HelpBehavior.ButtonAppends.

 HyperlinkUrlForHelpButton (string) – Used when HelpBehavior is Hyperlink or HyperlinkNewWindow. It
defines the URL of the Hyperlink.

Create a full URL that will be used in the href= attribute of the A tag. It can contain the token "{0}" to be replaced by the
ErrorMessageHelp value of the control requesting your PopupView. That token is used to differentiate elements of
URLs, such as the page or querystring parameter. For example:

http://www.mywebsite.com/help?helpid={0}

The entire value can be "{0}" if the ErrorMessageHelp value contains the complete URL.

It defaults to "{0}".

 ScriptForHelpButton (string) – Used when HelpBehavior is Script. It defines the script to invoke when the button is
clicked.

The token "{0}" is replaced by the ErrorMessageHelp text. Use it to customize the script. For example:

alert('{0}');

WARNING: When the token is inside a string, like in the above example, the ErrorMessageHelp property should not
contain the same quote characters that enclose the string. For example, the text “Peter’s Software” is illegal. It will
cause a JavaScript error.

This script should be valid javascript. It should not start with "javascript:".

It defaults to "".

 AppendHelpSeparator (string) – Used when HelpBehavior is ButtonAppends. It is inserted between the initial text
and the help text.

It supports HTML.

Typical separators are
 and <hr />.

It defaults to “<hr />”.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 221 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 Draggable (enum PeterBlum.DES.PopupViewDraggable) – Determines if the user can drag the popupview.

The enumerated type PeterBlum.DES.PopupViewDraggable has these values:

o No - It is not supported.

o Header - Only by dragging the header area, like a title bar

o All - All elements, except buttons, are draggable.

It defaults to PopupViewDraggable.Header.

 UseOpaqueEffect (Boolean) – When true and on a browser that supports Opacity, the entire view is slightly opaque to
show its underlying info at various times.

Rules for opacity:

o When the mouse moves over the PopupView, it immediately brightens in about .5 second.

o When the mouse leaves the PopupView, it starts to dim after 2 seconds and finishes .5 seconds later.

o When focus is placed into a control that shows the PopupView, it brightens in about .5 second and stays that
way until focus changes. Usually the only way to do that is clicking the Help button.

It defaults to true.

Changing the Opacity Behaviors

Opacity behaviors can be adjusted in the “Visual Effects” topic of the Global Settings Editor with these properties:

o MinimumOpaquePercent (integer) – When UseOpaqueEffect is true on a PopupView definition, this is the
value of opacity used as the minimum opacity.

Opacity has a range between 10 and 99, which represents a percentage of opacity. 100 is solid. 0 is transparent.

It defaults to 90.

o MaximumOpaquePercent (integer) – When UseOpaqueEffect is true on a PopupView definition, this is the
value of opacity used as the maximum opacity.

Opacity has a range between 10 and 99, which represents a percentage of opacity. 100 is solid. 0 is transparent.

It defaults to 100.

o OpaqueFadeDelay (integer) – When UseOpaqueEffect is true on a PopupView definition, this is the
number of milliseconds before fading begins.

The value is in milliseconds.

If 0, it fades immediately.

It defaults to 2000 (2 seconds).

 UsePopupEffect (Boolean) – When using Internet Explorer for Windows 5 and higher, this applies an animation to the
opening and closing of the popup. It uses the Filters feature which are set up globally.

When true and Internet Explorer is in use, filters are applied.

It defaults to true.

 UseShadowEffect (Boolean) – When true and on Internet Explorer 5.5+ for Windows, a shadow effect is applied.

If Callouts are used, this property is ignored because Callouts perform poorly with shadows.

It defaults to true.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 222 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 IEFixPopupOverList (Boolean) – Internet Explorer for Windows versions 5.0 through 6. have a problem allowing
absolutely positioned objects appearing over ListBox and DropDownLists. There is a special hack that uses an IFrame
and filter style sheet to make it appear like its over these controls. This property enables that hack on IE versions 5.5-6.
(IE 5 doesn't support the hack; IE 7 doesn't require the hack.)

The hack is imperfect. It breaks when another IFrame is in the same area of the page. By "breaks", this means the popup
usually looks incorrect including being transparent.

When the ASP.NET SmartNavigation feature is enabled on the page, it installs an IFrame and causes the same problem.

If the problem is affecting the PopupView, set the UseShadowEffect property to false.

Turn off the hack to work around this problem. Set this property to false. But you should only do this when the popup
does not overlap any listboxes or dropdownlists. If there is overlap, you have to make a design decision to change your
positioning or avoid using the IFrame.

When true, the hack is used when the browser is Internet Explorer for Windows versions 5.5 through 6..

When false, the hack not used. Choose this when the hack causes visual problems such as a transparent popup.

It defaults to true.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 223 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Other Validator Properties that Customize the Appearance
The Validator primarily uses the ErrorFormatter property to display itself. Here are a few more properties to customize the
appearance.

 ShowRequiredFieldMarker (Boolean) – When true, the RequiredFieldMarker Control will be inserted to the left of
the Validator control automatically. It defaults to false.

It uses the global defaults for the text, image, and tool tip that are set up in the Global Settings Editor with these
properties described in “Setting up the Global Defaults”.

When the Validator uses the Enabler property or is associated with controls that will be hidden and shown by
FieldStateControllers, the RequiredFieldMarker normally remains visible. If you prefer it to be hidden, you have these
options:

o Set PeterBlum.DES.Globals.Page.AutoHideRequiredFieldMarker to true.

o Substitute the RequiredFieldMarker Control for this property. Then set up a FieldStateController that shows and
hides the RequiredFieldMarker control as needed.

o In any script that changes the condition evaluated by the Enabler, call this function:

DES_UpdateRFM();

 HiliteFields (PeterBlum.DES.ControlConnectionCollection) – Identifies other controls on the page whose style will
change when this Validator detects an error. It works in conjunction with “Change the Style of Other Fields Nearby the
Error”.

Validators show their error message in the ErrorFormatter and optional ValidationSummary control. Since the goal is to
attract the user to the error, this property can identify other controls on the page. These controls will have their style
sheet changed when there is an error and return to the default when the error is fixed.

Choose this to change an enclosing control like a <div> or <table> to a different background color. Also consider
changing the color of the field label.

By default, HiliteFields is not used. You must enable it by setting HiliteFieldsNearbyError to true on
PeterBlum.DES.Globals.Page in Page_Load() or within the PageManager control. See “Change the Style of Other
Fields Nearby the Error”.

When you add textual controls like a Label, TextBox or anything that is formed with a tag, the following style
sheet class is used:

.DESVALTextHiliteFields
{
 font-weight: bold;
}

The rest use this style sheet class:

.DESVALNonTextHiliteFields
{
 background-color: #ffebcd; /* blanchedalmond */
}

Note that any Label property assigned to a control is automatically included in this list at runtime. So you don't need to
set up the labels twice.

Do not include the actual control being validated here because it is handled automatically elsewhere. See “Change the
Style of the Field With the Error”.

Elements of the HiliteFields collection must be PeterBlum.DES.ControlConnection objects. They can
reference a control by its ID or an object reference.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 224 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Adding ControlConnections with ASP.NET Declarative Syntax
<des:ValidatorClass id="[id]" runat="server" >

 <HiliteFields>
 <des:ControlConnection ControlID="[controlid1]" />
 <des:ControlConnection ControlID="[controlid2]" />
 </HiliteFields>

</des:ValidatorClass>

Adding ControlConnections Programmatically

The HiliteFields property will create PeterBlum.DES.ControlConnections for you by calling its Add()
method. HiliteFields.Add() takes a reference to the control object or its ID. (The reference is recommended for
performance.)

[C#]

Validator1.HiliteFields.Add(Label1); // reference to control
Validator1.HiliteFields.Add("Table1"); // ID of a control

[VB]

Validator1.HiliteFields.Add(Label1) ' reference to control
Validator1.HiliteFields.Add("Table1") ' ID of a control

 OtherStyles (PeterBlum.DES.OtherStyles) – Determines the source for style sheets associated with two features that are
not controlled by the ErrorFormatter property.

o The PeterBlum.DES.Globals.Page.ChangeStyleOnControlsWithError property assigns a style sheet to the
control to evaluate when there is an error.

o The ValidationSummary Control shows the validator’s error messages using a specific style sheet defined in its
ErrorMessageCssClass property.

Use the OtherStyles property to use a second set of style sheets for those features to differentiate them from other
controls. For example, differentiating required field errors from other errors.

The enumerated type PeterBlum.DES.OtherStyles has these values:

o Normal - ChangeStyleOnControlsWithError uses these styles in the
DES\Appearance\Validation\Validation.css style sheet file:
DESVALFieldWithError, DESVALListWithError, and DESVALCheckBoxWithError.

The ValidationSummary control uses DESVALSummaryErrors.

Here are the defaults for those styles:

 .DESVALFieldWithError
 {
 background-color: #ffb6c1; /* lightpink */
 }
 .DESVALListWithError
 {
 color: red;
 }
 .DESVALCheckBoxWithError
 {
 color: red;
 }
 .DESVALSummaryErrors
 {
 color: red;
 margin-top:6px;
 }

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 225 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

o Alternative - ChangeStyleOnControlsWithError uses these styles in the
DES\Appearance\Validation\Validation.css style sheet file:
DESVALFieldWithErrorAlt, DESVALListWithErrorAlt, and DESVALCheckBoxWithErrorAlt.

The ValidationSummary control uses DESVALSummaryErrorsAlt.

Here are the defaults for those styles:

 .DESVALFieldWithErrorAlt
 {
 background-color: #ffff99; /* light yellow */
 }
 .DESVALListWithErrorAlt
 {
 color: #ff8c00; /* dark orange */
 }
 .DESVALCheckBoxWithErrorAlt
 {
 color: #ff8c00; /* dark orange */
 }
 .DESVALSummaryErrorsAlt
 {
 color: #ff8c00; /* dark orange */
 margin-top:6px;
 }

When there are two or more validators assigned to the same control to evaluate, so long as any has
OtherStyles=Alternative and is showing an error, the control to evaluate will use the alternative style.

It defaults to OtherStyles.Normal.

 NoErrorFormatter (PeterBlum.DES.NoErrorFormatter) – Shows text and/or an image when there is no error to display.
It is commonly used to clearly state that the error has been fixed or there is no error. For example, when the user corrects
the error, an image like appears. (That image is supplied with DES. You can use your own as well.) It can also show
an indicator that a field has yet to be edited.

See below for its properties.

When setup, it appears in the location of the Validator. It can show an image using the ImageURL property and text
using the Text property. It has its own style sheet set in the CssClass property. Each can have the text “{DEFAULT}” to
tell DES to lookup a global setting that you made with the Global Settings Editor. That way, you have one standard
appearance for this feature.

PeterBlum.DES.NoErrorFormatter Class
The PeterBlum.DES.NoErrorFormatter class is used by the Validator’s NoErrorFormatter property, described
above. It has the following properties.

 Mode (enum PeterBlum.DES.NoErrorFormatterMode) – Determines when to show the text and image. The enumerated
type PeterBlum.DES.NoErrorFormatterMode has these values:

o Off – Do not use the NoErrorFormatter.

o Default – Use the value assigned to the DefaultNoErrorFormatterMode property in the Global Settings
Editor.

DefaultNoErrorFormatterMode also uses the enumerated type
PeterBlum.DES.NoErrorFormatterMode. It can be set to Off, Always, Corrected, Validated
and FirstTime. Do not set DefaultNoErrorFormatterMode to Default.

o Always – Always show when there is no error. It will appear as the page is first displayed. It will be removed
as an error is revealed. It will return after the error is fixed.

o Corrected – Show after the user fixes the error. It appears after the Validator displays the error and the user
corrects it.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 226 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

o Validated – Show after the field has been validated and has no errors. The user does not have to edit to
cause this. For example, if a field requires text and opens with text in the textbox, when the user clicks Submit,
the RequiredTextValidator will validate and the NoErrorFormatter appears.

o FirstTime - Show only on a new page, prior to any edits. It is hidden after validation occurs. Never show on
a post back page because validation has already occurred. It lets you attract users to fields that have not been
edited yet.

It defaults NoErrorFormatterMode.Default.

 CssClass (string) – The style sheet class name applied to the text and image. When "", the Validator’s style sheet class is
used.

When set to "{DEFAULT}", it uses the value assigned to the DefaultNoErrorFormatterCssClass property in the
Global Settings Editor. The DefaultNoErrorFormatterCssClass property defaults to "".

CssClass defaults to "{DEFAULT}".

 Text (string) – Assign when you want to display text or HTML.

When set to "{DEFAULT}", it uses the value assigned to the DefaultNoErrorFormatterText property in the Global
Settings Editor. The DefaultNoErrorFormatterText property defaults to "".

When using the ImageUrl property, you can position the image within the text by using the token "{IMAGE}" here. For
example: "Looks good {IMAGE}.". If the token is not found, the image will appear before the text.

Text defaults to "{DEFAULT}".

Reminder: If your page should follow the XHTML standard, make sure your tags conform to XHTML.

 TextLookupID (string) – Gets the value for Text through the String Lookup System. (See “String Lookup System” in
the General Features Guide.) The LookupID and its value should be defined within the String Group of
ValidationMisc. If no match is found OR this is blank, Text will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

When "", no string lookup is performed. When set to "{DEFAULT}", it uses the value assigned to the
DefaultNoErrorFormatterTextLookupID property in the Global Settings Editor. The
DefaultNoErrorFormatterTextLookupID defaults to "", which indicates no lookup.

TextLookupID defaults to "{DEFAULT}".

 ImageURL (string) - The URL to an image file. If assigned, an image will appear before the Text or at the location of
the "{IMAGE}" token. If unassigned, no image will be shown.

When set to "{DEFAULT}", it uses the global setting DefaultNoErrorFormatterImageURL property in the Global
Settings Editor which defaults to "".

ImageURL defaults to "{DEFAULT}".

DES provides this graphic: when you use “{APPEARANCE}/Validation/ValidIcon.gif”.

You can assign the alternative text used by the tag when the image cannot be loaded to the
RequiredNoErrorFormatterImageAltText property in the Global Settings Editor which defaults to "".

Special Symbols for URLs

The “{APPEARANCE}” token will be replaced by the default path to the Appearance folder, which you defined as
you set up the web site.

Supports the use of the tilde (~) as the first character to be replaced by the virtual path to the web application.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 227 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Drawing The User’s Attention To The Error
For a demo, see http://www.peterblum.com/DES/DemoShowError.aspx.

The ErrorFormatter is one way to attract the user to the error. However, the message may not be noticed because it’s small,
off the page, or simply turned off (ErrorFormatter.Display property is set to None.)

DES provides numerous ways to get the user’s attention.

Click on any of these topics to jump to them:

 Set Focus to the Control

 Show an Alert

 Change the Style of the Field With the Error

 Change the Style of Other Fields Nearby the Error

 Blinking the ErrorFormatter

 Confirm when Warnings are shown

 Use the ValidationSummary Control

In addition, there are several hooks available where you can run your own script after validation occurs. These are found on
the PageManager control and PeterBlum.DES.Globals.Page object:

 PostPageValidationFunctionName – Your function is called after page-level validation. It is passed the validation
group and validation results. Use it to communicate an error on page submission.

 PostValidationUpdateScript – Script called after any validation, whether the field is edited or the page is submitted.

 CustomSubmitFunctionName – Your function is called during page submission. It may be called before or after
validation depending on the SubmitOrder property. This function offers a way to cancel page submission. For example,
if you want to display a confirmation message that has a Cancel button, use it here.

http://www.peterblum.com/DES/DemoShowError.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 228 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Set Focus to the Control
For a demo, see http://www.peterblum.com/DES/DemoShowError.aspx.

DES can automatically set the focus back to the field containing the error. It offers the following settings:

 PeterBlum.DES.Globals.Page.FocusOnChange – A page-level property to set the focus when the error is detected
immediately after a change is made.

 PeterBlum.DES.Globals.Page.FocusOnSubmit – A page-level property to set the focus when the error is detected as
the page is submitted. It sets focus to the first control with an error.

 PeterBlum.DES.Globals.Page.FocusAfterAlert – A page-level property to set focus after the alert is displayed when
using the ErrorFormatters that display alerts: Image with Alert (AlertImageErrorFormatter) and Hyperlink with Alert
(HyperLinkErrorFormatter).

 HyperLinkToFields – The ValidationSummary control offers the HyperLinkToFields property to let the user click on
an error message to set the focus to the field associated with that error.

You set the page-level properties in the Page_Load() method, the PageManager control, or in the Global Settings
Editor.

This example sets FocusOnChange and FocusOnSubmit properties to true.

PeterBlum.DES.Globals.Page.FocusOnChange = true
PeterBlum.DES.Globals.Page.FocusOnSubmit = true

Page-Level Properties

The following properties can be set in the PageManager control or on the PeterBlum.DES.Globals.Page object in
Page_Load(). You can also set global default values for these properties using the Global Settings Editor.

 FocusOnChange (Boolean) - Set the focus to the field after a change is made when there is a validation error. When
true, focus is set on the field (unless the field or browser doesn't support setting focus.)

It defaults to the DefaultFocusOnChange property in the Global Settings Editor, which defaults to false.

 FocusOnSubmit (Boolean) – Set focus to the first field that generates a validation error when the page is submitted.
When true, focus is set on the field (unless the field or browser doesn't support setting focus.)

It defaults to the DefaultFocusOnSubmit property in the Global Settings Editor, which defaults to false.

 FocusAfterAlert (Boolean) – Set focus to a field with an error after the alert is displayed when using the
ErrorFormatters that display alerts.. Supported by “Image with Alert” (AlertImageErrorFormatter) and “HyperLink with
Alert” (HyperLinkErrorFormatter). When true, focus is set to the field after the alert is dismissed.

It defaults to the DefaultFocusAfterAlert property in the Global Settings Editor, which defaults to false.

http://www.peterblum.com/DES/DemoShowError.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 229 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Show an Alert
For a demo, see http://www.peterblum.com/DES/DemoShowError.aspx.

DES offers four ways to show an alert with error messages.

1. If you want the user to click on a button to show the alert, use the “Image with Alert” ErrorFormatter in the
ErrorFormatter property of the Validator control.

2. If you want the user to click on a hyperlink to show the alert, use the “Hyperlink with Alert” ErrorFormatter in the
ErrorFormatter property of the Validator control.

3. To show an alert automatically after the user changes the field, set the
PeterBlum.DES.Globals.Page.ShowAlertOnChange property to true. It will consolidate all error messages
associated with the field that was edited.

4. To show an alert automatically when the user submits the page, set the
PeterBlum.DES.Globals.Page.ShowAlertOnSubmit property to true. It will consolidate all error messages
associated with the validation group that is being submitted. This alert can be delayed until the user attempted to submit
the page several times with an error by using PeterBlum.DES.Globals.Page.DelayAlertOnSubmitCount.

ShowAlertOnChange and ShowAlertOnSubmit can be formatted using the
PeterBlum.DES.Globals.Page.AlertTemplate, PeterBlum.DES.Globals.Page.AlertErrorListStyle, and
PeterBlum.DES.Globals.Page.AlertErrorLeadText properties. All of these are page-level properties. You set them in the
Page_Load() method, the PageManager control, or in the Global Settings Editor.

This example sets ShowAlertOnChange and ShowAlertOnSubmit properties to true.

PeterBlum.DES.Globals.Page.ShowAlertOnChange = true
PeterBlum.DES.Globals.Page.ShowAlertOnSubmit = true

Page-Level Properties

The following properties can be set in the PageManager control or on the PeterBlum.DES.Globals.Page object in
Page_Load(). You can also set global default values for these properties using the Global Settings Editor.

 ShowAlertOnChange (Boolean) – Show an alert after a validation error caused by an onchange event. The alert
includes all the error messages associated with the field that was changed. When true, the alert is shown. It uses the
property AlertTemplate to apply further formatting. Messages are formatted in list or sentence style using
AlertErrorListStyle and given AlertErrorLeadText in front of each message.

If you don’t assign it on the page, it uses the value from the DefaultShowAlertOnChange property in the Global
Settings Editor, which defaults to false.

Validators have two sources for error messages: the ErrorMessage and SummaryErrorMessage properties. The error
message shown depends on the AlertShowsSummaryMessage property.

 ShowAlertOnSubmit (Boolean) – Show an alert when the page is submitted and errors are found. The alert includes all
of the error messages associated with the submit control’s validation group. When true, the alert is shown. It uses the
property AlertTemplate to apply further formatting. Messages are formatted in list or sentence style using
AlertErrorListStyle and given AlertErrorLeadText in front of each message.

An alert can show either before or after post back. When Validators can evaluate on the client-side, they appear on an
alert prior to post back. Any Validators found to have errors after post back will be displayed in an alert that appears
immediately after post back generates the page.

If you don’t assign it on the page, it uses the value from the DefaultShowAlertOnSubmit property in the Global
Settings Editor, which defaults to false.

This alert can be delayed until the user attempted to submit the page several times with an error by using
PeterBlum.DES.Globals.Page.DelayAlertOnSubmitCount. Use it when you normally wouldn’t show an alert because
it helps the user when they click the submit button several times without noticing the errors that are preventing the page
from being submitted.

 DelayAlertOnSubmitCount (int) – When using ShowAlertOnSubmit, you can delay the alert from appearing until the
user has attempted to submit several times. Use it when you normally wouldn’t show an alert because it helps the user

http://www.peterblum.com/DES/DemoShowError.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 230 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

when they click the submit button several times without noticing the errors that are preventing the page from being
submitted.

When 0, the alert shows each time. When 1, it shows on the second attempt to submit. When 2, it shows on the third
attempt, etc. Make sure ShowAlertOnSubmit is true or this feature is not used.

If you don’t assign it on the page, it uses the value from the DefaultDelayAlertOnSubmitCount property in the Global
Settings Editor, which defaults to 0.

 AlertTemplate (string) – Used in the alerts shown by the ShowAlertOnChange and ShowAlertOnSubmit properties.
It provides a textual framework for building a single description from the list of error messages associated with the fields
that have errors. If it is blank, you will get only a list of error messages. Otherwise, use the token “{0}” in this string. It
will be replaced by the error messages.

The string from AlertErrorLeadText will precede each error message. The messages are shown in a list or sentence
style based on AlertErrorListStyle.

If you don’t assign it on the page, it uses the value from the DefaultAlertTemplate property in the Global Settings
Editor, which defaults to "Please correct these errors:\n{0}". (The symbol “\n” represents a carriage
return in JavaScript strings.)

 AlertTemplateLookupID (string) – Gets the value for AlertTemplate through the String Lookup System. (See “String
Lookup System” in the General Features Guide.) The LookupID and its value should be defined within the String
Group of ValidationMisc. If no match is found OR this is blank, AlertTemplate will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 AlertErrorLeadText (string) – Used in the alerts shown by the ShowAlertOnChange and ShowAlertOnSubmit
properties. This text is inserted before each error message. Use it to denote a new message. For example, "-" or "*". If
you use a “#” symbol, that character will be replaced by a number that represents the error message's position in the list.

If you don’t assign it on the page, it uses the value from the DefaultAlertErrorLeadText property in the Global
Settings Editor, which defaults to "#. ".

 AlertErrorListStyle (Boolean) – Used in the alerts shown by the ShowAlertOnChange and ShowAlertOnSubmit
properties. When true, error messages are listed on separate lines. When false, error messages are listed in a single
paragraph style.

If you don’t assign it on the page, it uses the value from the DefaultAlertErrorListStyle property in the Global
Settings Editor, which defaults to true.

 AlertShowsSummaryMessage (Boolean) – Used by the ShowAlertOnChange property to determine the source of the
error message on a validator: from its ErrorMessage or SummaryErrorMessage property. When true,
SummaryErrorMessage is used. (If not assigned, ErrorMessage is used.) When false, the ErrorMessage is used.

If you don’t assign it on the page, it uses the value from the DefaultAlertShowsSummaryMessage property in the
Global Settings Editor, which defaults to true.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 231 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Change the Style of the Field With the Error
For a demo, see http://www.peterblum.com/DES/DemoShowError.aspx.

A very effective way to get the users attention is to change the background or text color of a data entry field with an error.

Click on any of these topics to jump to them:

 Using This Feature

 Page-Level Properties

Since textboxes, checkboxes, radiobuttons, listboxes and dropdownlists all have different looks, you can set up to 3 style
sheet class names:

 For listboxes and dropdownlists

 For checkboxes and radiobuttons. With these you can also determine if the input field, label or both have the style
applied.

 For all remaining controls including textboxes.

DES predefines style sheets for you in DES\Appearance\Validation\Validation.css:

.DESVALListWithError
{
 color: red;
}

.DESVALCheckBoxWithError
{
 color: red;
}

.DESVALFieldWithError
{
 background-color: #ffb6c1; /* lightpink */
}

They are automatically used by DES, unless you change the values of ControlErrorCssClass, ListErrorCssClass, and
CheckBoxErrorCssClass. You only need to enable the feature by setting ChangeStyleOnControlsWithError to true.
All of these properties are set either on PeterBlum.DES.Globals.Page in Page_Load() or with the PageManager control.

These style sheet classes are merged with the existing style sheet class of the control. So only edit the style sheet attributes
that should change, not the overall look.

Alternative Styles

Sometimes you want a validator to use an alternative style to differentiate it. For example, it is common to differentiate
required validators from others. This feature supports an alternative style by setting the OtherStyles property to
Alternative on the Validator control. Once done, it uses these style sheet classes in
DES\Appearance\Validation\Validation.css:

.DESVALListWithErrorAlt
{
 color: #ff8c00; /* dark orange */
}

.DESVALCheckBoxWithErrorAlt
{
 color: #ff8c00; /* dark orange */
}

http://www.peterblum.com/DES/DemoShowError.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 232 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

.DESVALFieldWithErrorAlt
{
 background-color: #ffff99; /* light yellow */
}

Using This Feature

1. Enable the feature by setting ChangeStyleOnControlsWithError to true on PeterBlum.DES.Globals.Page in
Page_Load() or in the PageManager control.

2. Evaluate how the default styles look. If not OK, continue.

3. Edit the style sheet classes in DES\Appearance\Validation\Validation.css. These styles will merge with the
control’s current style sheet. So only provide style sheet attributes that differentiate the control from its basic style.

Control type Style sheet class

Listboxes and dropdownlists DESVALListWithError

Checkboxes and radiobuttons DESVALCheckBoxWithError

All remaining controls including textboxes DESVALFieldWithError

4. If desired, you can create your own style sheet classes. Set the following properties to your classes. They are on
PeterBlum.DES.Globals.Page in Page_Load() or in the PageManager control.

Control type PropertyName

Listboxes and dropdownlists ListErrorCssClass

Checkboxes and radiobuttons CheckBoxErrorCssClass

All remaining controls including textboxes ControlErrorCssClass

If your style sheet class merges with the control’s current style sheet class, put a plus (“+”) character first. For example,
“+MyClassName”.

5. Test the appearance. If your checkboxes and radiobuttons don’t have the desired look, see if the CheckBoxECCMode
property can help. It is set on PeterBlum.DES.Globals.Page in Page_Load() or in the PageManager control.

6. For any validator that should use alternative style sheet classes, set its OtherStyles property to Alternative. It will
use these style sheet classes:

Control type Style sheet class

Listboxes and dropdownlists DESVALListWithErrorAlt

Checkboxes and radiobuttons DESVALCheckBoxWithErrorAlt

All remaining controls including textboxes DESVALFieldWithErrorAlt

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 233 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Page-Level Properties

The following properties can be set in the PageManager control or on the PeterBlum.DES.Globals.Page object in
Page_Load(). You can also set global default values for these properties in the “Changing the Field Appearance” topic of
the Global Settings Editor.

 ChangeStyleOnControlsWithError (Boolean) – Determines if controls change their appearance to show an error. By
default, the style sheet classes “DESVALFieldWithError”, “DESVALListWithError”, and
“DESVALCheckBoxWithError” determine their appearance. When the validator’s OtherStyles property is set to
Alternative, it uses these style sheet classes by default: “DESVALFieldWithErrorAlt”,
“DESVALListWithErrorAlt”, and “DESVALCheckBoxWithErrorAlt”.

Usually you edit these to change their font color or background, although its up to you to determine the desired effect.

If you want to choose alternative style sheet class names, set them in these properties: ControlErrorCssClass,
ListErrorCssClass, and CheckBoxErrorCssClass. (See below.)

These styles are declared in DES\Appearance\Validation\Validation.css:

.DESVALFieldWithError
{
 background-color: #ffb6c1; /* lightpink */
}
.DESVALListWithError
{
 color: red;
}
.DESVALCheckBoxWithError
{
 color: red;
}

.DESVALFieldWithErrorAlt
{
 background-color: #ffff99; /* light yellow */
}
.DESVALListWithErrorAlt
{
 color: #ff8c00; /* dark orange */
}
.DESVALCheckBoxWithErrorAlt
{
 color: #ff8c00; /* dark orange */
}

These style sheet classes are merged with the existing style sheet class of the control. So only edit the style sheet
attributes that should change, not the overall look.

When true, the style is changed. If you do not assign it, its initial value comes from the global setting
DefaultChangeStyleOnControlsWithError which starts at false.

 ControlErrorCssClass (string) – When ChangeStyleOnControlsWithError is true, the style sheet class name
assigned to all of the controls that generate a validation error. The original class is restored when the error is fixed. No
style sheet changes are made when this property is "".

To merge your style sheet with the current style sheet class, put a plus (“+”) character first. For example,
“+MyClassName”. Your style sheet class’s attributes will override any attributes that it shares with the original class.

It is overridden by the ListErrorCssClass and CheckBoxCssClass properties, when they are assigned to a class name.
Those properties cover ListBox, DropDownList, CheckBox, and RadioButton controls. For all other controls, including
textboxes, ControlErrorCssClass is always used.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 234 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Unless you edit this property, ControlErrorCssClass uses the global setting DefaultControlErrorCssClass, which
defaults to "+DESVALFieldWithError".

The default style is declared in DES\Appearance\Validation\Validation.css:

.DESVALFieldWithError
{
 background-color: #ffb6c1; /* lightpink */
}

 ListErrorCssClass (string) – When ChangeStyleOnControlsWithError is true, the style sheet class name assigned
to ListBox and DropDownList controls that generate a validation error. The original class is restored when the error is
fixed. No style sheet changes are made when this property is "".

To merge your style sheet with the current style sheet class, put a plus (“+”) character first. For example,
“+MyClassName”. Your style sheet class’s attributes will override any attributes that it shares with the original class.

When "", the class name in ControlErrorCssClass is used on ListBoxes and DropDownLists. If both
ListErrorCssClass and ControlErrorCssClass are "", these controls do not change their styles on error.

Unless you edit this property, ListErrorCssClass uses the global setting DefaultListErrorCssClass, which defaults to
"+DESVALListWithError".

The default style is declared in DES\Appearance\Validation\Validation.css:

.DESVALListWithError
{
 color: red;
}

 CheckBoxErrorCssClass (string) – When ChangeStyleOnControlsWithError is true, the style sheet class name
assigned to CheckBox and RadioButton controls that generate a validation error. The original class is restored when the
error is fixed. No style sheet changes are made when this property is "".

To merge your style sheet with the current style sheet class, put a plus (“+”) character first. For example,
“+MyClassName”. Your style sheet class’s attributes will override any attributes that it shares with the original class.

When "", the class name in ControlErrorCssClass is used on CheckBoxes and RadioButtons. If both
CheckBoxErrorCssClass and ControlErrorCssClass are "", these controls do not change their styles on error.

Note: CheckBoxErrorCssClass does not apply to CheckBoxList or RadioButtonList controls. Their container tag is
always assigned the style sheet of ControlErrorCssClass.

Checkboxes and RadioButtons have two parts: their input field and label. Use the CheckBoxECCMode property to
determine which of them have the class applied.

Unless you edit this property, CheckBoxErrorCssClass uses the global setting DefaultCheckBoxErrorCssClass,
which defaults to "+DESVALCheckBoxWithError".

The default style is declared in DES\Appearance\Validation\Validation.css:

.DESVALCheckBoxWithError
{
 color: red;
}

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 235 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 CheckBoxECCMode (integer) – Checkboxes and RadioButtons have two parts: their input field and label. Use this to
determine which of those have the class name applied when using the CheckBoxErrorCssClass and
ControlErrorCssClass properties.

It has these values:

o 0 = Both input field and label

o 1 = Input field

o 2 = Label

Unless you edit this property, CheckBoxECCMode uses the global setting DefaultCheckBoxECCMode, which
defaults to 0.

CheckBoxECCMode only affects client-side code that updates the classes. ASP.NET does not provide enough
information to assign the class on the two parts (input and label). After post back detects errors and applies the class, the
entire CheckBox and RadioButton control will be assigned to the class. The input field of HtmlInputCheckBox and
HtmlInputRadioButton will be assigned to the class.

 ControlErrorCssClass_Alt (string) – When ChangeStyleOnControlsWithError is true, the style sheet class name
assigned to all of the controls that generate a validation error when their OtherStyles property is set to Alternative.
The original class is restored when the error is fixed. No style sheet changes are made when this property is "".

To merge your style sheet with the current style sheet class, put a plus (“+”) character first. For example,
“+MyClassName”. Your style sheet class’s attributes will override any attributes that it shares with the original class.

It is overridden by the ListErrorCssClass_Alt and CheckBoxCssClass_Alt properties, when they are assigned to a
class name. Those properties cover ListBox, DropDownList, CheckBox, and RadioButton controls. For all other
controls, including textboxes, ControlErrorCssClass_Alt is always used.

Unless you edit this property, ControlErrorCssClass_Alt uses the global setting DefaultControlErrorCssClass_Alt,
which defaults to "+DESVALFieldWithErrorAlt".

The default style is declared in DES\Appearance\Validation\Validation.css:

.DESVALFieldWithErrorAlt
{
 background-color: #ffff99; /* light yellow */
}

 ListErrorCssClass_Alt (string) – When ChangeStyleOnControlsWithError is true, the style sheet class name
assigned to ListBox and DropDownList controls that generate a validation error. The original class is restored when the
error is fixed. No style sheet changes are made when this property is "".

To merge your style sheet with the current style sheet class, put a plus (“+”) character first. For example,
“+MyClassName”. Your style sheet class’s attributes will override any attributes that it shares with the original class.

When "", the class name in ControlErrorCssClass_Alt is used on ListBoxes and DropDownLists. If both
ListErrorCssClass_Alt and ControlErrorCssClass_Alt are "", these controls do not change their styles on error.

Unless you edit this property, ListErrorCssClass_Alt uses the global setting DefaultListErrorCssClass_Alt, which
defaults to "+DESVALListWithErrorAlt".

The default style is declared in DES\Appearance\Validation\Validation.css:

.DESVALListWithErrorAlt
{
 color: #ff8c00; /* dark orange */
}

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 236 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 CheckBoxErrorCssClass_Alt (string) – When ChangeStyleOnControlsWithError is true, the style sheet class
name assigned to CheckBox and RadioButton controls that generate a validation error. The original class is restored
when the error is fixed. No style sheet changes are made when this property is "".

To merge your style sheet with the current style sheet class, put a plus (“+”) character first. For example,
“+MyClassName”. Your style sheet class’s attributes will override any attributes that it shares with the original class.

When "", the class name in ControlErrorCssClass_Alt is used on CheckBoxes and RadioButtons. If both
CheckBoxErrorCssClass_Alt and ControlErrorCssClass_Alt are "", these controls do not change their styles on
error.

Note: CheckBoxErrorCssClass_Alt does not apply to CheckBoxList or RadioButtonList controls. Their container tag is
always assigned the style sheet of ControlErrorCssClass_Alt.

Checkboxes and RadioButtons have two parts: their input field and label. Use the CheckBoxECCMode property to
determine which of them have the class applied.

Unless you edit this property, CheckBoxErrorCssClass_Alt uses the global setting
DefaultCheckBoxErrorCssClass_Alt, which defaults to "+DESVALCheckBoxWithErrorAlt".

The default style is declared in DES\Appearance\Validation\Validation.css:

.DESVALCheckBoxWithErrorAlt
{
 color: #ff8c00; /* dark orange */
}

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 237 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Change the Style of Other Fields Nearby the Error
For a demo, see http://www.peterblum.com/DES/DemoShowError.aspx.

When a Validator detects an error, it can change the style of the label and other controls around the field with the error.

Click on any of these topics to jump to them:

 Using This Feature

 Page-Level Properties

For example, suppose you have a textbox with a label and its enclosed in a <div> like this:

<div width="100%">
 <asp:Label id="Label1" runat="server">Name</asp:Label>
 <asp:TextBox id="TextBox1" runat="server"></asp:TextBox>
 <des:RequiredTextValidator id="RequiredTextValidator1" runat="server"
 ControlIDToEvaluate="TextBox1" ErrorMessage="Required">
 </des:RequiredTextValidator>
</div>

With DES, you can use the “HiliteFields” feature to do the following:

 Assign a style, such as a font color, to the label.

 Assign a style, such as a background color, to the enclosing <div>

 Assign a style to any other control

DES will switch to your style when the error is shown and switch back when the error is corrected.

Normal:

Name

When the error is shown:

Using This Feature

Here is how to set up the HiliteFields feature.

1. Enable the feature by setting HiliteFieldsNearbyError to true on PeterBlum.DES.Globals.Page in Page_Load()
or in the PageManager control.

2. Evaluate how the default styles look. If skip to step 5 where you will assign values to each Validator control.

3. Edit the style sheet classes in DES\Appearance\Validation\Validation.css. These styles will merge with the
control’s current style sheet. So only provide style sheet attributes that differentiate the control from its basic style.

Control type Style sheet class

Labels, TextBoxes, CheckBoxes, and RadioButtons DESVALTextHiliteFields

All remaining controls including ListBoxes DESVALNonTextHiliteFields

Name Required

http://www.peterblum.com/DES/DemoShowError.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 238 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

4. If desired, you can create your own style sheet classes. Set the following properties to your classes. They are on
PeterBlum.DES.Globals.Page in Page_Load() or in the PageManager control.

Control type PropertyName

Labels, TextBoxes, CheckBoxes, and RadioButtons TextHiliteFieldsCssClass

All remaining controls including ListBoxes NonTextHiliteFieldsCssClass

If your style sheet class merges with the control’s current style sheet class, put a plus (“+”) character first. For example,
“+MyClassName”.

5. To set up label controls, edit the Validator’s Label property to reference the Label control. (This feature supports Label,
SecondLabel, Label2, Label3, and Label4 properties.) Specifically, the Label’s LabelControlID or LabelControl
property must be assigned. Labels will automatically use the style sheet class defined in TextHiliteFieldsCssClass. See
“Properties for Error Messages”.

6. For each additional control whose styles you want to change, be sure that the control has runat="server" and an
ID= property.

7. Add each additional control into the HiliteFields property on the Validator control. You can add as many as you like.
The Properties Editor provides an easy interface for adding controls.

Adding to HiliteFields using ASP.NET declarative syntax
<des:ValidatorClass id="[id]" runat="server" >
 <HiliteFields>
 <des:ControlConnection ControlID="[controlid1]" />
 <des:ControlConnection ControlID="[controlid2]" />
 </HiliteFields>
</des:ValidatorClass>

Adding to HiliteFields Programmatically

Pass either the control ID or its object into the HiliteFields.Add() method like this:

Validator1.HiliteFields.Add("ID")
Validator1.HiliteFields.Add(Control)

Example

Here is the HTML from above with HiliteFields support for a Label control and <div> tag (with runat="server" and
ID="Div1").

<div width="100%" runat="server" id="Div1">
 <asp:Label id="Label1" runat="server">Name</asp:Label>
 <asp:TextBox id="TextBox1" runat="server"></asp:TextBox>
 <des:RequiredTextValidator id="RequiredTextValidator1" runat="server"
 ControlIDToEvaluate="TextBox1" ErrorMessage="Required"
 Label-LabelControlID="Label1">

<HiliteFields>
 <des:ControlConnection ControlID="Div1" />
</HiliteFields>

 </des:RequiredTextValidator>
</div>

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 239 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Page-Level Properties

The following properties can be set in the PageManager control or on the PeterBlum.DES.Globals.Page object in
Page_Load(). You can also set global default values for these properties in the “Changing the Field Appearance” topic of
the Global Settings Editor.

 HiliteFieldsNearbyError (Boolean) – Determines if fields identified by the validator's Label and HiliteFields
properties will change their appearance when the Validator detects an error.

By default, the style sheet classes “DESVALTextHiliteFields” and “DESVALNonTextHiliteFields” are
where you set their appearance. The first handles textual controls such as Label, TextBox, CheckBox, and RadioButton.
The other handles the rest (ListBox, DropDownList, etc).

Usually you edit these to change their font color or background, although its up to you to determine the desired effect.

If you want to choose alternative style sheet class names, set them in these properties: TextHiliteFieldsCssClass and
NonTextHiliteFieldsCssClass.

These styles are declared in DES\Appearance\Validation\Validation.css:

.DESVALTextHiliteFields
{
 font-weight: bold;
}
.DESVALNonTextHiliteFields
{
 background-color: #ffebcd; /* blanchedalmond */
}

These style sheet classes are merged with the existing style sheet class of the control. So only edit the style sheet
attributes that should change, not the overall look.

When true, the style is changed. If you do not assign it, its initial value comes from the global setting
DefaultHiliteFieldsNearbyError which starts at false.

 TextHiliteFieldsCssClass (string) – The style sheet class name assigned to textual controls that appear in the
HiliteFields and Label properties on Validator controls when there is a validation error. The original class is restored
when no error is detected.

The following control classes and their subclasses are considered textual fields: System.Web.UI.WebControls.Label,
System.Web.UI.WebControls.TextBox, System.Web.UI.WebControls.CheckBox,
System.Web.UI.HtmlControls.HtmlInputText, System.Web.UI.HtmlControls.HtmlInputCheckBox,
System.Web.UI.HtmlControls.HtmlInputRadioButton, and the tag. (DES’s TextBoxes and LocalizableLabel are
subclasses and considered textual.) All other controls are non-textual.

When "", it does not cause any style changes to the textual controls in HiliteFields or Label properties.

To merge your style sheet with the current style sheet class, put a plus (“+”) character first. For example,
“+MyClassName”. Your style sheet class’s attributes will override any attributes that it shares with the original class.

Unless you edit this property, TextHiliteFieldsCssClass uses the global setting DefaultTextHiliteFieldsCssClass,
which defaults to "+DESVALTextHiliteFields".

The default style is declared in DES\Appearance\Validation\Validation.css:

.DESVALTextHiliteFields
{
 font-weight: bold;
}

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 240 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 NonTextHiliteFieldsCssClass (string) – The style sheet class name assigned to non-textual controls that appear in the
HiliteFields properties on Validator controls when there is a validation error. The original class is restored when no error
is detected.

When "", it does not cause any style changes to the non-textual controls in HiliteFields properties.

To merge your style sheet with the current style sheet class, put a plus (“+”) character first. For example,
“+MyClassName”. Your style sheet class’s attributes will override any attributes that it shares with the original class.

Unless you edit this property, NonTextHiliteFieldsCssClass uses the global setting
DefaultNonTextHiliteFieldsCssClass, which defaults to "+DESVALNonTextHiliteFields".

The default style is declared in DES\Appearance\Validation\Validation.css:

.DESVALNonTextHiliteFields
{
 background-color: #ffebcd; /* blanchedalmond */
}

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 241 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Blinking the ErrorFormatter
For a demo, see http://www.peterblum.com/DES/DemoShowError.aspx.

You can make your ErrorFormatter blink on the page to get the user’s attention. DES generates the blinking effect by
switching between two style sheet classes.

Blinking is established on the page-level with the BlinkOnChange and BlinkOnSubmit properties.

This example sets BlinkOnChange to blink three times and BlinkOnSubmit to blink continuously.

PeterBlum.DES.Globals.Page.BlinkOnChange = PeterBlum.DES.BlinkMode.Three
PeterBlum.DES.Globals.Page.BlinkOnSubmit = PeterBlum.DES.BlinkMode.On

Each Validator can control blinking with the BlinkAllowed property and dictate the style sheet used with the BlinkCssClass
properties.

Page-Level Properties

They can be set in the PageManager control or on the PeterBlum.DES.Globals.Page object in Page_Load(). You can
also set global default values for these properties in the “Changing the Field Appearance” topic of the Global Settings
Editor.

 BlinkOnChange (enum PeterBlum.DES.BlinkMode) - Enables the error to blink to catch the user's attention after a
change event. It can blink continuously or a specific number of times. The enumerated type
PeterBlum.DES.BlinkMode has these values:

o Off – It does not blink.

o On – It blinks continuously

o One – It blinks once

o Two – It blinks twice

o Three – It blinks three times

o Five – It blinks five times

o Ten – It blinks ten times

If you do not assign it, its initial value comes from the DefaultBlinkOnChange property in the Global Settings
Editor, which defaults to BlinkMode.Off.

 BlinkOnSubmit (enum PeterBlum.DES.BlinkMode) - Enables the error to blink to catch the user's attention after a
submit event. (See above for the values of this enumerated type.)

If you do not assign it, its initial value comes from the DefaultBlinkOnSubmit property in the Global Settings
Editor, which defaults to Off.

 BlinkTime (Integer) - The number of milliseconds to hold each state of a blinking object.

If you do not assign it, its initial value comes from the DefaultBlinkTime property in the Global Settings Editor,
which defaults to 1000 (1 second).

http://www.peterblum.com/DES/DemoShowError.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 242 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Properties on the Validator

 BlinkAllowed (Boolean) – When true, blinking is allowed on this error message. Generally you set this to false
when blinking does not apply to the individual error message. It defaults to true.

Note: The hyperlink text shown in the HyperLinkErrorFormatter does not blink. However, the rest of it – BeforeHTML,
AfterHTML and ImageUrl – do blink.

 BlinkCssClass (string) – A style sheet name for the blinked state of the error message. When blinking, the client side
switches HTML ‘class’ attribute of the tags that enclose the error message between this and its original value
(in CssClass). If this is blank, the client side switches between transparent text and its original text.

It defaults to "DESVALBlinkText".

The default style is declared in DES\Appearance\Validation\Validation.css:

.DESVALBlinkText
{
 color: White;
}

Note: When using the Text ErrorFormatter, if you want to blink the image but not the text, set BlinkCssClass = "".

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 243 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Confirm when Warnings are shown
Validators can be used as warnings instead of errors when you set their EventsThatValidate property to OnChange. A
warning looks like a validator error, but it does not prevent submitting or saving the page. For example, you may prefer the
user to enter a birthdate that is at least 18 years old and if they don’t tell them they need a parent to come to the appointment
with them.

To remind the user of these warnings, you can show a confirmation message that lists the warnings on the page. When
PeterBlum.DES.Globals.Page.WarningConfirmOnSubmit is true, the confirmation appears when the user attempts to
submit the page. The user can click OK to submit the page or Cancel to prevent submission. The warnings will be on the
page at that time for their review.

The message is a combination of a few things. Text before and after the list of warnings is established with the
PeterBlum.DES.Globals.Page.WarningConfirmTemplate property. By default, it has a header of “Are you sure you want
to submit the page with these issues remaining?”. Since multiple warnings can appear, they are each preceded by the text
from the PeterBlum.DES.Globals.Page.WarningConfirmLeadText property, which by default shows incremental
numbers.

Submission has an order of actions between validating, showing confirm messages, and running custom scripts as determined
by the PeterBlum.DES.Globals.Page.SubmitOrder property. This confirmation feature is run along immediately after the
confirmation message established with the PeterBlum.DES.Globals.Page.ConfirmMessage property.

Page-Level Properties

They can be set in the PageManager control or on the PeterBlum.DES.Globals.Page object in Page_Load(). You can
also set global default values for these properties in the “Confirmation for Validators as Warnings” topic of the Global
Settings Editor.

 WarningConfirmOnSubmit (Boolean) – Determines if any warning messages from validators (where
Validator.EventsThatValidate=OnChange) will show in a confirm message.

The confirmation message is only shown when the user attempts to submit the page. It occurs in the SubmitOrder
immediately after the normal confirm message does.

Use the WarningsConfirmTemplate to define text appearing before and after the warning messages. It inserts the
warning messages into the “{0}” token of the WarningsConfirmTemplate property, or at the end if no {0} token exists.
It uses the Validator's SummaryErrorMessage if defined. If not, it uses the ErrorMessage property.

Warning messages are preceded by WarningsConfirmLeadText and followed by a linefeed.

When not assigned on the page, it uses the global setting DefaultWarningConfirmOnSubmit, which defaults to
false.

 WarningsConfirmTemplate (string) – The text of the Warning Confirmation message that appears before and after the
warning messages. Use the token “{0}” to indicate where the warning messages go. If omitted, the warnings appear at
the end of this property’s text.

When not assigned on the page, it uses the global setting DefaultWarningConfirmTemplate, which defaults to “Are
you sure you want to submit the page with these issues remaining?\n\n{0}”.

 WarningsConfirmTemplateLookupID (string) – Gets the value for WarningsConfirmTemplate through the String
Lookup System. (See “String Lookup System” in the General Features Guide.) The LookupID and its value should
be defined within the String Group of ConfirmMessages. If no match is found OR this is blank,
WarningsConfirmTemplate will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

When not assigned on the page, it uses the global setting DefaultWarningConfirmTemplateLookupID, which defaults
to "".

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 244 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 WarningsConfirmLeadText (string) – Text that appears before each warning message. It denotes a new message. For
example, "-" or "*".

If you use a # symbol, that character will be replaced by a number that represents the error message's position in the list.

When not assigned on the page, it uses the global setting DefaultWarningsConfirmLeadText, which starts at "#. ".

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 245 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Changing When the Validator is Evaluated
Validators normally evaluate their condition and show the error when you change the field or attempt to submit the page.
There are a number of circumstances where you don’t want the Validator to evaluate. They are:

 Use Validation Groups to make a submit control validate a specific list of Validators. This is often used on pages with
multiple submit buttons that server different purposes.

 Use the Enabler Property when one field’s state affects whether the Validator evaluates its data or not. It intelligently
enables the Validator depending on conditions of the page.

 The Validator control includes numerous properties that disable validation in special situations: Enabled,
EnableClientScript, EventsThatValidate, EvaluateOnClickOrChange, and SupportClientSideLookupByID.

Click on any of these topics to jump to them:

 Validation Groups

 The Enabler Property

 Other Properties That Disable Validation

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 246 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Validation Groups
For a demo, see http://www.peterblum.com/DES/DemoGroup.aspx.

Often, your pages will include separate sections, each with its own data entry fields and their Validators. Usually each of
these sections has its own submit control. When it’s clicked, you don’t want Validators outside of the section to be evaluated.
DES allows you to define a Group name on each submit control and the associated controls it acts upon: Validators and
ValidationSummary. When the user hits a submit control, it will only evaluate Validators that share the same group name.
The ValidationSummary will only appear when its group name matches. This behavior is called validation groups.

Using Validation Groups

Set the group name on the Group property, which is found on Validator controls, the ValidationSummary control and all of
the submit controls supplied with DES. In fact, if you leave the Group property empty, the Submit control is still matching
its group name (empty) to all Validators with the same name.

When you use the validation group feature, it is easiest of you use DES’s submit controls because they include a Group
property. However, you can continue using Microsoft’s controls to submit a page by assigning a NativeControlExtender to
them. The NativeControlExtender provides a Group property that supports these features.. See “Using Native Button
Controls to Submit the Page” for details.

Special Characters In Group Names

Group names are normally terms that are meaningful to the design of the page, such as “Login” and “Panel1”. They should
not include any of these characters: pipe (|), plus (+) or asterisk (*). Those characters have special meanings. They are:

 The asterisk (*) means match to all groups. It can be used on a submit control to run all Validators on the page. It can be
used on the ValidationSummary to display Validators from any group. It cannot be used in the Validator control.

 The pipe (|) is a delimiter for defining a list of groups. Each group name is separated by a pipe (|). Validators and
ValidationSummary support it; submit controls do not. They will match to any group name on the submit control that
matches to the list. For example, “Group1|Group2” will match submit controls whose group is “Group1” or “Group2”. If
you are using an empty string in a Group property and want it to be in the list, simply define your list with the | as the
first character, like this: “|Group2” (matches empty string and “Group2”).

 The plus (+) helps when Validators and submit controls are in a row of a grid or Repeater. It also sometimes applies to
UserControls. When using a grid or Repeater, the same row is repeated. If that row contains the same Validator, each
row’s Validator will share the same Group property name. That means when the user attempts to submit a single row, it
will validate all groups. The hack around this is to rename the Group property with the naming container’s UniqueID as
the row is created. That gives each row a separate group name.

Similarly, if you are using the same UserControl multiple times on the page, it reuses the same validators. If each should
be its own group name, use the + character in the Group property of each validator and button on that User Control.

The plus character simplifies the process. Add a plus character as the first character of the group name. It will
automatically create a group name of NamingContainer.UniqueID + Group.

This applies to Validators, submit controls, and ValidationSummary. The string in the Group property is automatically
changed as each of these controls are added to the control tree (the OnLoad phase).

Special Character Support By Control Type

Control type * | +

Validators

ValidationSummary

Buttons (submit controls)

http://www.peterblum.com/DES/DemoGroup.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 247 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

The Enabler Property
For a demo, see http://www.peterblum.com/DES/DemoEnabler.aspx.

There are times when a Validator control should be disabled. For example, don’t validate a textbox because an associated
checkbox is unmarked or a DropDownList does not have the right value. Use the Enabler property on the Validator control
to set up rules to enable and disable it. The rules are actually Conditions, like those inside of each Validator and used in the
MultiConditionValidator. See “About Conditions”.

By default, the Enabler property is set to “None”, where it doesn’t disable the control. You can set it to any Condition,
including those you may create programmatically. Often you set the NotCondition property to true to reverse the logic of
these conditions. For a list of available conditions, see “Evaluating Conditions” and “Non-Data Entry Condition Classes”.

Some commonly used Conditions are:

 RequiredTextCondition – From the RequiredTextValidator, it determines if another textbox has text.

 CheckStateCondition – From the CheckStateValidator, it determines the mark in a checkbox or radiobutton.

 SelectedIndexCondition – From the SelectedIndexValidator, it determines the SelectedIndex on a list-type control.

 VisibleCondition – A Non Data Entry Condition that determines if a field is visible. See “Non-Data Entry Conditions”.

 MultiCondition – From the MultiConditionValidator, use it to build Boolean logic from all available Conditions.

Be aware of these issues when using the Enabler property:

 By default, Validators will not evaluate when the associated data entry control is hidden or disabled. If you need to
allow validation when hidden or disabled, you must set the page-level property AutoDisableValidators to false.
Then assign the Enabler to the appropriate conditions: VisibleCondition, EnabledCondition, or a MultiCondition that
contains both.

 Most Conditions have a property called EvaluateOnClickOrChange which defaults to true. Change it to false
when using it in an Enabler. If its left true, the control it evaluates will cause the validator to evaluate and it will
have its appearance changed when there is an error and
PeterBlum.DES.Globals.Page.ChangeStyleOnControlsWithError is used.

 Do not use this to detect a control whose Visible property is set to false. Such a control does not create HTML for
the client-side to use. Instead, set the Condition’s Enabled property to false when the control is Visible=false.

Setting the Enabler in Design Mode

The Properties Editor offers the window shown below to select a Condition and to edit its properties.

http://www.peterblum.com/DES/DemoEnabler.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 248 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

1. Select the Condition from the DropDownList. For a description of conditions, see “Evaluating Conditions” and
“Non-Data Entry Condition Classes”.

2. Establish the properties in the Properties grid.

Reminder: Be sure to set EvaluateOnClickOrChange to false on this Condition and any of its child Conditions.

3. Click OK.

Adding an Enabler with ASP.NET Declarative Syntax

If you want to enter the Enabler property and its child properties into the web form using the HTML mode, there are special
considerations. The format is unusual, in part because the .Net framework doesn’t support changing the class of a property
(polymorphism) without an interesting hack.

Here is the RequiredTextValidator with the Enabler set to the CheckStateCondition.

<des:RequiredTextValidator id="RequiredTextValidator1" runat="server"
 ControlIDToEvaluate="TextBox1" ErrorMessage="This field is required" >

 <EnablerContainer>
 <des:CheckStateCondition ControlIDToEvaluate="CheckBox1"
 EvaluateOnClickOrChange="false" >
 </des:CheckStateCondition>
 </EnablerContainer>

</des:RequiredTextValidator>

Reminder: Be sure to set EvaluateOnClickOrChange to false on all Conditions within the Enabler as shown.

Notice that the Enabler property never appears in the attributes of the <des:RequiredTextValidator> tag. (It will be
added when using the Property Editor but its completely meaningless.) Instead, the <EnablerContainer> tag is a child
of the Validator control tag. That tag has no attributes. The child to <EnablerContainer> defines the class and all
properties of the Condition:

<des:classname[all properties] />

 des:classname – Use any Condition class for the classname. If you create your own classes, you must declare the
namespace using the <% @REGISTER %> tag at the top of the page.

 [all properties] – Enter the properties into the tag the same way you do for any other control.

Adding an Enabler Programmatically

Here are the steps to set up the Enabler.

1. Create an instance of the desired Condition. There is a constructor that takes no parameters. For a list of conditions, see
“Evaluating Conditions” and “Non-Data Entry Condition Classes”.

Note: There are also constructors that take parameters. Each demands an “owner” in the first parameter. That value
must be the Validator object.

2. Assign property values.

Reminder: Be sure to set EvaluateOnClickOrChange to false on all Conditions within the Enabler.

3. Assign the Condition object to the Enabler property.

In this example, add the CheckStateCondition, which is checking CheckBox1, to Validator1.

[C#]

PeterBlum.DES.CheckStateCondition vCond =
 new PeterBlum.DES.CheckStateCondition();
vCond.ControlToEvaluate = CheckBox1;
vCond.EvaluateOnClickOrChange = false;
Validator1.Enabler = vCond;

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 249 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

[VB]

Dim vCond As PeterBlum.DES.CheckStateCondition = _
 New PeterBlum.DES.CheckStateCondition()
vCond.ControlToEvaluate = CheckBox1
vCond.EvaluateOnClickOrChange = False
Validator1.Enabler = vCond

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 250 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Other Properties That Disable Validation
The following properties are on each Validator control and Condition except where noticed. Within the Properties Editor,
they are in the “Behavior” category.

 Enabled (Boolean) – When false, the Validator is entirely disabled. It will never validate nor generate any HTML into
the page. Generally you use this when you have a Validator control on the page which you programmatically need to
enable and disable based on other conditions. It defaults to true.

If the Validator references another control whose Visible property is set to false, the Validator is automatically
disabled. This is because when Visible is false, the web control does not generate any HTML and the condition cannot
evaluate it on the client-side.

You can set the Enabled property on the client side using the javascript function DES_SetEnabled(), published in
the DES scripts. See “Changing The Properties of a Validator With Client-Side Scripts”.

 EnableClientScript (Boolean) - Determines if client-side validation runs. When true, it sets up client-side scripting for
this control to validate. When false, this control never validates on the client-side. This property doesn't prevent the
server side validation from occurring. It defaults to true.

If you set up a Validator whose validation data you don’t want to expose to the user, such as comparing to password, set
this to false. Otherwise, the page will contain the private text and the user can simply view the HTML of the page to find
it.

When you set up a CustomValidator, you may only be able to supply a server-side evaluation function (perhaps you
desire functionality that is only available at the server.) When CustomValidator.CustomEvalFunctionName is blank,
it will automatically act as if EnableClientScript is false.

Some browsers do not support DES's JavaScript code. DES automatically sets this to false when it detects such a
browser. Some browsers have turned off their JavaScript code. DES detects this and disables client-side validation. See
“PeterBlum.DES.Globals.Page.JavaScriptEnabled property”.

ALERT: Always set up server-side validation by testing PeterBlum.DES.Globals.Page.IsValid is true in your post
back event handler before using the data. See “Properties and Methods to Validate the Page”.

 EventsThatValidate (enum PeterBlum.DES.ValidationEvents) - Determines which client-side events are fired to
validate. There are two events: when the field is changed and when the page is submitted. By default, both fire to
validate. Here are the values of the PeterBlum.DES.ValidationEvents enumerated type:

o All – Fire both events. This is the default.

o OnSubmit – Only fire when the page is submitted. Use this when you want error messages to wait until the
page is submitted or the validation logic requires so many fields to be set that it doesn’t make sense after each
field is changed.

For example, if you have 3 TextBoxes where a MultiConditionValidator reports an error if any are blank, as the
user changes the first textbox, the MultiConditionValidator will report an error because the next two are blank.

o OnChange – Only fire when the field is changed. This option works well as a warning message that appears
once the user has changed the field. When they submit, the Validator isn’t tested, even on the server-side, and
the condition always indicates success.

A warning message communicates a condition that is likely to be an error although it is still valid. For example,
you accept the quantities above 1000 for a Quantity field although such an entry may be an error. Your
Validator’s error message could read: “Are you sure that this quantity should be {TEXTVALUE}?.”

Note: When using OnChange, the error message will not appear in the ValidationSummary. It will also be
removed when the page is submitted.

You can further assist the user by showing a confirmation message with the current warnings listed as they
attempt to submit the page. The message lets them know of problems and optionally cancel submitting the page.
See “Confirm when Warnings are shown”.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 251 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 EvaluateOnClickOrChange (Boolean) – This property is only on Condition classes. When true, the Condition will
hookup the client-side onclick or onchange event handlers of any controls to evaluate. When a user clicks or changes the
control to evaluate, it will run the Validator. When false, clicks and edits do not run validation. It defaults to true.

This can be used in several ways:

o If you have multiple controls in the condition and want to prevent firing them the user has edited the last one,
set this to false on any condition that includes the initial controls and set it to true on a condition that only
involves the last control. For example, suppose you have two TextBoxes that use a CompareTwoFieldValidator
and RequiredTextValidators. Set the CompareTwoFieldValidator.EvaluateOnClickOrChange = false; the
first RequiredTextValidator.EvaluateOnClickOrChange = false; and the last
RequiredTextValidator.EvaluateOnClickOrChange = true.

o When using the Enabler property, its conditions often should not cause validation to run. Always set this to
false.

o When a Condition is used in a FieldStateController, it allows a master control to run it. All conditions within the
FieldStateController can set this to false.

 SupportClientSideLookupByID (Boolean) - Allows JavaScript programmers to get to the client-side representation of
the Validator object by the ClientID of the owner control. See “Running Validation With Client-Side Scripts” and
“Changing The Properties of a Validator With Client-Side Scripts”.

Use the client-side function DES_FindAOById() to search for the “Action object” that matches the ClientID you
specify. That function will return null if not found.

Use the Action object to modify it, such as changing the Enabled property. When SupportClientSideLookupByID is
true, two things happen:

 The ID is written as a property, CID, into the control. (It isn’t written by default to avoid adding excess text to the
page.)

 If the Enabled property is false, normally no code is written to the client side. This is overridden and code is
generated so users can toggle the Enabled property. Note that client-side code is never generated when the browser
doesn't support it or the EnableClientScript property is false.

It defaults to false.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 252 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Other Properties
 InAJAXUpdate (Boolean) – When the page uses AJAX callbacks to add, update, or remove this control, set this to

true. It defaults to false.

In addition, if any of these properties identify a non-DES control that participates in the AJAX callback, set this to
true:

o ControlIDToChange, ControlToChange, SecondControlIDToEvaluate, and SecondControlToEvaluate

o Controls in ControlConnections.

o Nested conditions of MultiConditionValidator and CountTrueConditionsValidator. Look at the
ControlIDToEvaluate and SecondControlIDToEvaluate properties of the child conditions.

o Enabler. Look at the ControlIDToEvaluate and SecondControlIDToEvaluate.

o ExtraControlsToRunThisAction.

Note: This is only needed for non-DES controls. DES controls will tell the Validator if their own IsAJAXUpdate property
is true.

See “Using These Controls with AJAX” in the General Features Guide.

 ViewStateMgr (PeterBlum.DES.ViewStateMgr) – Enhances the ViewState on this control to provide more optimal
storage and other benefits. Normally, the properties of this control and its segments are not preserved in the ViewState.
Just call ViewStateMgr.TrackProperty("propertyname") to record the property in the ViewState.

For more details, see “The ViewState and Preserving Properties for PostBack” in the General Features User’s
Guide.

 IsValid (Boolean) – Determines if validation found errors or not. Test it only after the Validate() method has run.
Otherwise, it will be a meaningless true. After validation runs, it is true when there are no errors and false when
there are errors.

Note: Validator controls may not evaluate their conditions for many reasons including the Enabled and Enabler
properties turned off validation, the validation group name did not match the Group property, and the Validator’s
Condition did not have the settings or data to evaluate. In these cases, the Validator control reports that it is valid.

 HasValidated (Boolean) – Determines if the Validate()method has been called. It returns true when it has.

If you did not find the desired property above, click on any of these topics to jump to them:

 Finding the Condition by Validator

 Properties Common to most Conditions

 Properties for Error Messages

 ErrorFormatters: Customizing the Appearance of the Error Message

 Other Validator Properties that Customize the Appearance

 Changing When the Validator is Evaluated

 Other Properties

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 253 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Submitting the Page: Server-Side Validation
Note: This section provides a significant feature to DES. When users do not follow the directions here, server side validation
does not happen.

When the user submits a page, validation should take place across the page or the validation group. If validation fails, the
user should get an updated page with error messages from the Validators that reported errors.

If the browser supports client-side validation, DES will validate on the client-side and prevent the page from being posted
back when errors are detected. This requires each control that submits the page to be hooked into DES’s client-side validation
code. See “Submitting the Page: Client-Side Validation”.

When the page is posted back, DES must validate again, to handle any case not captured by the client-side. Server side
validation is essential because client-side validation is not always available for these reasons:

 User’s browser isn’t supported by DES for client-side validation. DES scales down gracefully but expects server side
validation to be in place.

 User has turned off JavaScript on their browser. Again DES handles this gracefully, but needs server side validation to
be in place.

 Hackers anticipate that the user has not setup server-side validation and turn off javascript to bypass the client-side
validation. Without server side validation, they can launch SQL Injection and Cross Site Scripting attacks on your site.
See the Input Security User’s Guide for details.

Click on any of these topics to jump to them:

 Setting Up Server-Side Validation

 Preventing Validation Or Evaluating Individual Validators

 Properties and Methods to Validate the Page

 Properties and Methods to Evaluate a Validator Control

 DES’s Button, LinkButton, and ImageButton Controls

 DES’s Submit Controls For The GridView and DetailsView

 DES’s Submit Controls For The DataGrid

 Using Native Button Controls to Submit the Page

 Using the Menu Control to Validate the Page

 Using the BulletedList Control

 Using AJAX Callback Controls

 Using Validation with AutoPostBack

 Submitting the Page: Client-Side Validation

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 254 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Setting Up Server-Side Validation
Click on any of these topics to jump to them:

 DES Submit Control PostBack Event Handlers when CausesValidation=true

 PostBack Event Handlers when CausesValidation=false

 Validating With All Other PostBack Event Handlers

1. Make your submit controls run DES validation on the client and server side.

 For buttons, use DES’s Button, LinkButton, and ImageButton controls. See “DES’s Button, LinkButton, and
ImageButton Controls”. Alternatively, you can attach the NativeControlExtender to native buttons. See “Using
Native Button Controls to Submit the Page”.

 For the DataGrid, use DES’s EditCommandColumn and ButtonColumn controls. See “DES’s Submit Controls For
The DataGrid”.

 For the GridView and DetailView control, use DES’s ButtonField and CommandField controls. See “DES’s Submit
Controls For The GridView and DetailsView”.

 For autopostback in non-DES controls, see “Using Validation with AutoPostBack”.

 For any other control or action that needs validation when it submits, see “Using the Menu Control to Validate the
Page”.

2. If a submit control should not validate, set its CausesValidation property to false. For example, a Cancel or Back
button. In addition, if you need to evaluate individual validators instead of those in a validation group, set
CausesValidation to false.

3. If you are using the Group property on Validators, assign the group name to the Group property on the submit control.
See “Validation Groups”.

4. All submit controls have a postback event handler event. For example, the Click event handler on a Button and
TextChanged event handler on a TextBox. When you use that event, add server side validation code to it, as shown
below.

DES Submit Control PostBack Event Handlers when CausesValidation=true

Your postback event handler method must check that PeterBlum.DES.Globals.Page.IsValid is true before saving or
otherwise using the data.

Note: When their SkipPostBackEventsWhenInvalid property is true, DES buttons will skip calling their Click and
Command postback event handler methods. Yet, its wise to add the code shown below in case that setting gets
inadvertently changed.

[C#]

protected void Button1_Click(object sender, EventArgs e)
{
 if (PeterBlum.DES.Globals.Page.IsValid)
 {
 // code that saves or uses the data of the web form
 }
}

[VB]

Protected Sub Button1_Click(ByVal sender As Object, ByVal e As EventArgs) _
 Handles Button1.Click

 If PeterBlum.DES.Globals.Page.IsValid Then
 ' code that saves or uses the data of the web form
 End If
End Sub

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 255 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

PostBack Event Handlers when CausesValidation=false

If you set the CausesValidation property to false with the intent on evaluating individual validators, use this
technique. Otherwise no changes are needed to your postback event handler method.

Your postback event handler method must call Validate() on each validator that you need to evaluate. After check that all
validators IsValid properties are true before saving or otherwise using the data.

This example uses three validators.

[C#]

protected void Button1_Click(object sender, EventArgs e)
{
 RequiredTextValidator3.Validate();
 RequiredTextValidator4.Validate();
 RequiredTextValidator5.Validate();
 if (RequiredTextValidator3.IsValid &&
 RequiredTextValidator4.IsValid &&
 RequiredTextValidator5.IsValid)
 {
 // code that saves or uses the data of the web form
 }
}

[VB]

Protected Sub Button1_Click(ByVal sender As Object, ByVal e As EventArgs) _
 Handles Button1.Click

 RequiredTextValidator3.Validate()
 RequiredTextValidator4.Validate()
 RequiredTextValidator5.Validate()
 If RequiredTextValidator3.IsValid And _
 RequiredTextValidator4.IsValid And _
 RequiredTextValidator5.IsValid Then
 ' code that saves or uses the data of the web form
 End If
End Sub

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 256 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Validating With All Other PostBack Event Handlers

Your post back event handler method must call 6PeterBlum.DES.Globals.Page.Validate(). Then check
PeterBlum.DES.Globals.Page.IsValid is true before saving or otherwise using the data. See the logic below. If you
are not using any validation groups, pass "" to the Validate() method.

[C#]

protected void Button1_Click(object sender, EventArgs e)
{
 PeterBlum.DES.Globals.Page.Validate("validation group name");
 if (PeterBlum.DES.Globals.Page.IsValid)
 {
 // code that saves or uses the data of the web form
 }
}

[VB]

Protected Sub Button1_Click(ByVal sender As Object, ByVal e As EventArgs) _
 Handles Button1.Click

 PeterBlum.DES.Globals.Page.Validate("validation group name")
 If PeterBlum.DES.Globals.Page.IsValid Then
 ' code that saves or uses the data of the web form
 End If
End Sub

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 257 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Preventing Validation Or Evaluating Individual Validators
Every submit control should be connected to DES’s system. This mostly allows the client-side validation system to determine
how to handle each button. If you do not want submit control to validate, such as with a Cancel button, set the
CausesValidation property to false on the submit control.

When false, the CausesValidation property indicates that automatic validation will not occur when the button is clicked.
It will not occur on the client-side or server-side. However, on the server-side, you can elect to validate within your Click
post back event handler method. You can either use the 6PeterBlum.DES.Globals.Page.Validate() method or
the Validate() methods on individual validators.

See “PostBack Event Handlers when CausesValidation=false”.Properties and Methods to Validate the Page

These properties and methods are on PeterBlum.DES.Globals.Page and operate on a group or all Validators. They can only
be used programmatically. Generally these are used in the postback event handler method.

 Validate(groupname) (method) – Runs the validation process on Validator controls whose Group property
matches the group name passed in. If the supplied group is “*”, it matches to all Validators. Any Validator control found
to be invalid will show its error message for the page that is returned to the user.

[C#]

public void Validate(string groupName);

[VB]

Public Sub Validate(ByVal groupName As string)

Call it within your post back event handler method, prior to saving data. Then test the
PeterBlum.DES.Globals.Page.IsValid property is true. See “Validating With All Other PostBack Event Handlers”.

Note: It is safe to call it in Page_Load(), even when the page is new (IsPostback=false). However, only do it in special
cases. Normally Page_Load() is reserved to setting up the structure of the page and post back event handlers are
designed to handle the posted back data.

When run, it updates the PeterBlum.DES.Globals.Page.IsValid property and sets
PeterBlum.DES.Globals.Page.HasValidated to true.

If you want to run some code before validation occurs, use the PeterBlum.DES.Globals.Page.BeforeValidation event
handler.

 IsValid (Boolean) – Determines if validation found errors or not. Test it only after the Validate() method has run.
Otherwise, it will be a meaningless true. After validation runs, it is true when there are no errors and false when
there are errors.

For examples, see “DES Submit Control PostBack Event Handlers when CausesValidation=true” and “ Validating With
All Other PostBack Event Handlers”.

Note: Validator controls may not evaluate their conditions for many reasons including the Enabled and Enabler
properties turned off validation, the validation group name did not match the Group property, and the Validator’s
Condition did not have the settings or data to evaluate. In these cases, the Validator control reports that it is valid.

 HasValidated (Boolean) – Determines if the Validate()method has been called. It returns true when it has.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 258 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Properties and Methods to Evaluate a Validator Control
These properties and methods are on Validator controls. If you need to explicitly validate a list of validators, use these instead
of “Properties and Methods to Validate the Page”. Usually, you set the submit control’s CausesValidation property to
false so the submit control does not automatically call PeterBlum.DES.Globals.Page.Validate(). Then use
these methods and properties in the post back event handler method, prior to saving the data.

For example, you have a menu with a command that should only validate two of the 10 Validators on the page and a
validation group does not work for you. Call the Validate() method on the two Validators then check if both are valid by
testing their IsValid property to be true.

See “PostBack Event Handlers when CausesValidation=false” for an example.

 Validate() (method) – Runs the validation process on the Validator control. If it is found to be invalid, it will show
its error message for the page that is returned to the user. It sets the IsValid property to true or false and
HasValidated property to true.

[C#]

public void Validate();

[VB]

Public Sub Validate()

 IsValid (Boolean) – Determines if validation found errors or not. Test it only after the Validate() method has run.
Otherwise, it will be a meaningless true. After validation runs, it is true when there are no errors and false when
there are errors.

Note: Validator controls may not evaluate their conditions for many reasons including the Enabled and Enabler
properties turned off validation, the validation group name did not match the Group property, and the Validator’s
Condition did not have the settings or data to evaluate. In these cases, the Validator control reports that it is valid.

 HasValidated (Boolean) – Determines if the Validate()method has been called. It returns true when it has.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 259 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

DES’s Button, LinkButton, and ImageButton Controls
DES provides replacements to the native Button, LinkButton, and ImageButton controls. When using Validator controls on a
page, you should use these replacements or use the technique described in “Using Native Button Controls to Submit the
Page” to use Microsoft’s and third party buttons.

Each of these controls has been extended to handle client-side and server-side validation with the DES Validation
Framework. They have several new properties built around validation. If you have a license for the Peter’s Interactive
Pages module, there are several new properties beyond those needed for validation. See “Properties on DES’s Button,
LinkButton, and ImageButton Controls”.

Click on any of these topics to jump to them:

 Using DES’s Button, LinkButton, and ImageButton Controls

 Properties on DES’s Button, LinkButton, and ImageButton Controls

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 260 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Using DES’s Button, LinkButton, and ImageButton Controls

Each DES submit control is a direct subclass of Microsoft’s controls and has the same name. However, the namespace is
different. All controls use the namespace of PeterBlum.DES. The following are DES’s submit controls:

 Button – subclassed from System.Web.UI.WebControls.Button.

 LinkButton – subclassed from System.Web.UI.WebControls.LinkButton.

 ImageButton – subclassed from System.Web.UI.WebControls.ImageButton.

Converting An Existing Page

If you already have a page with the native button controls, use the Web Application Updater program with the option
Convert native controls to their DES equivalents. See the Installation Guide.

Adding the Control In Design Mode

1. Drag the control from the toolbox. DES’s controls are in a separate area from those supplied with ASP.NET. Be sure that
you use DES’s controls.

2. Use the Properties Editor to assign:

 ID – The unique identifier of this control

 Text – the label shown on the button

 Group – If you are using validation groups, this is the group name. See “Validation Groups”.

 Click event – Set up the Click event method where you will use the data submitted.

See “Properties on DES’s Button, LinkButton, and ImageButton Controls” for other properties.

Adding the Control in ASP.NET Declarative Syntax

Each of these controls have this format:

<des:controlclass id="your_id" runat="server" [properties] />

Some examples:

<des:Button id="Button1" runat="server" Text="Submit" />

<des:LinkButton id="LinkButton1" runat="server" Text="Submit" Group="Data" />

See “Properties on DES’s Button, LinkButton, and ImageButton Controls” for properties.

Adding the Control Programmatically

1. Identify a container control where the submit control will be added. This is usually a PlaceHolder, UserControl, Panel,
row in a DataGrid, or TableCell. If you want to add to the main page, add a PlaceHolder where it will be attached.

2. Instantiate the control. Its constructor takes no parameters.

3. Assign the ID property. The Text and Group properties are commonly assigned too.

4. Add the control object to the Controls property of the container control.

5. Attach an event handler method to its Click event.

Here is an example which creates a Button and attaches it to the Submit_Click event method, defined elsewhere.

[C#]

PeterBlum.DES.Button vButton = new PeterBlum.DES.Button();
vButton.ID = "SubmitButton";
vButton.Text = "Submit";
PlaceHolder1.Controls.Add(vButton);
vButton.Click += new System.EventHandler(Submit_Click);

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.button.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.linkbutton.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.imagebutton.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 261 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

[VB]

Dim vButton As PeterBlum.DES.Button = New PeterBlum.DES.Button()
vButton.ID = "SubmitButton"
vButton.Text = "Submit"
PlaceHolder1.Controls.Add(vButton)
' on your Submit_Click() method, use Handles SubmitButton.Click

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 262 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Properties on DES’s Button, LinkButton, and ImageButton Controls

For properties inherited from the native buttons, click on each of these links: Button, LinkButton, ImageButton.

 CausesValidation (Boolean) – When true, the button performs client-side and server-side validation. When false, it
does not. See “Submitting the Page: Server-Side Validation” and “Submitting the Page: Client-Side Validation”.

Even when false, on the server side, you can still manually perform validation either on the page (call
PeterBlum.DES.Globals.Page.Validate()) or individual Validators (see “PostBack Event Handlers when
CausesValidation=false”).

It defaults to true.

It fires validators first on the client-side. Then again on the server side immediately before calling your Click or
Command event handler method. You should always set up server side validation as follows:

DES Validation Framework

You can have the button never call your Click or Command event handler by setting
SkipPostBackEventsWhenInvalid property to TrueFalseDefault.True or use the global setting
ButtonsSkipPostBackEventsWhenInvalid in “Other Validation Properties” topic of the Global Settings Editor.

Otherwise, test PeterBlum.DES.Globals.Page.IsValid is true before saving or otherwise using the data from the page.

Native Validation Framework

Test Page.IsValid is true before saving or otherwise using the data from the page.

 Group (string) – Only used by the DES Validation Framework. Group determines which validators are invoked when
this button is clicked. Those that match the value in this will be run. See “Validation Groups” for details.

Group names are blank by default. When left blank, this runs all validators whose Group property is also blank.

You can also use the string "*" to run every validator on the page.

When the button is shown on multiple rows (naming containers) of a GridView, DataGrid or Repeater, you can make
each row have a unique group name by adding a plus (+) character as the first character of the group name.

Note: The pipe character (|) feature is not supported to allow a delimited list of groups. The delimited list feature is only
supported on Validators and ValidationSummary controls.

Just be sure to use an identical name in the validators associated with this button.

It defaults to "".

ASP.NET 2.0 Note: The ValidationGroup property, inherited from the base class, also works the same way. If you assign
both, Group overrides ValidationGroup.

 SkipPostBackEventsWhenInvalid (enum PeterBlum.DES.TrueFalseDefault) – Determines if the button fires its server-
side Click and Command events when there are validation errors detected.

Only applies to buttons that have CausesValidation = true.

The enumerated type PeterBlum.DES.TrueFalseDefault has these values:

o True - When CausesValidation is true, the Click and Command events are fired only when IsValid is
true. When CausesValidation=false, the events always fire.

o False - The Click and Command events are always fired on postback.

o Default - Determine the value from the global setting ButtonsSkipPostBackEventsWhenInvalid, which
defaults to true. It is set in the “Other Validation Properties” topic of the Global Settings Editor.

It defaults to TrueFalseDefault.Default.

 PostBackUrl (string) – This is only offered in ASP.NET 2.0 and is documented here. You should not use the
PostBackUrl property when the button invokes validation. See “Validation and the PostBackUrl Property” for details.

You can use this property when not validating with this button.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.button_members.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.linkbutton_members.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.imagebutton_members.aspx�
http://msdn2.microsoft.com/library/2exe3w14(en-us,vs.80).aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 263 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 MayMoveOnClick (Boolean) – When true, it installs some extra scripts to prevent the following situation:

When the user edits a control and immediately clicks on the button, the onchange event of the control fires, running
validation. If validation removes error message and the ValidationSummary, the button may jump. This happens before
the button's onclick event, preventing that onclick event to run because the mouse button is no longer on the button.

When false, no additional code is added.

It defaults to false.

Note: Mozilla-based browsers (FireFox, Netscape, etc) do not support this capability on the LinkButton. A browser must
support the DHTML click() method on the <a> tag.

 InAJAXUpdate (Boolean) – When using AJAX on this page, set this to true if the control is involved in an AJAX
update. See “Using These Controls with AJAX” in the General Features Guide. It defaults to false.

 Visible (Boolean) – When false, no HTML is output. This control is entirely unused. It defaults to true.

For the following properties, please see the “Enhanced Buttons” section of the Interactive Pages User’s Guide as they
all require a license that covers the Peter’s Interactive Pages module.

 ConfirmMessage (string) – When assigned, this button will display a Confirm message box with this text. The user can
click OK or Cancel. If OK, the page submission process continues. If Cancel, it stops.

 DisableOnSubmit (Boolean) – When true, the submit control disables itself visually after the user clicks on it and the
page is submitted. (Validation may stop submission, which leaves the control enabled.)

 ChangeMonitorEnables (enum PeterBlum.DES.ChangeMonitorEnablesSubmitControl) – Determines if the button
switches its state between disabled and enabled.

 ChangeMonitorUsesConfirm (enum PeterBlum.DES.ChangeMonitorUsesConfirm) – When the button uses a
confirmation message from its ConfirmMessage property, with the ChangeMonitor, you can make it display based on
the changed state of the page.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 264 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

DES’s Submit Controls For The GridView and DetailsView
The GridView and DetailsView work well with all DES controls. However, their
System.Web.UI.WebControls.CommandField and System.Web.UI.WebControls.ButtonField classes do not set up client or
server side validation with DES’s framework. They create buttons using Microsoft’s Button or LinkButton classes. DES
needs buttons support its client side and server side validation.

DES supplies new versions of CommandField and ButtonField that automatically validate and offer other useful features.

Using DES’s CommandField Control

DES provides a replacement to CommandField, PeterBlum.DES.CommandField. It is a direct subclass of
System.Web.UI.WebControls.CommandField that provides DES validation and additional properties.

To use PeterBlum.DES.CommandField through design mode or HTML view in your editor:

1. Add the native CommandField control to the GridView or DetailsView.

<asp:CommandField [properties]></asp:CommandField>

2. Replace the “asp” namespace with “des”.

<des:CommandField [properties]></des:CommandField>

3. If you want the Group property assigned to something other than "", add it directly:

<des:CommandField Group="GroupName" [properties]></des:CommandField>

If you make each row GridView editable and only want a Button to evaluated its own row, add a plus (+) character as the
first character of the Group property on the CommandField and all Validators.

For example, Group="+GridView".

Note: The CommandField already has a ValidationGroup property which is basically the same as the Group property.
You can use either. If the Group property is assigned, it always overrides the ValidationGroup property.

4. If you have set up a RowUpdating event handler and want to validate on the server side, you must call
PeterBlum.DES.Globals.Page.Validate(validationgroupname) before testing
PeterBlum.DES.Globals.Page.IsValid. (Validation will happen on the client-side so long as
CausesValidation=true.) If IsValid is false, set the args parameter’s Cancel property to true and do not save.

See “Validating With All Other PostBack Event Handlers”.

5. For additional properties, see “Properties on DES’s Button, LinkButton, and ImageButton Controls”.

http://msdn2.microsoft.com/library/eaczbcwk(en-us,vs.80).aspx�
http://msdn2.microsoft.com/library/44ayfk42(en-us,vs.80).aspx�
http://msdn2.microsoft.com/library/eaczbcwk(en-us,vs.80).aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 265 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Using DES’s ButtonField Control

DES provides a replacement to ButtonField, PeterBlum.DES.ButtonField. It is a direct subclass of
System.Web.UI.WebControls.ButtonField that provides DES validation and additional properties.

To use PeterBlum.DES.ButtonField through design mode or HTML view in your editor:

1. Add the native ButtonField control to the GridView or DetailsView.

<asp:ButtonField [properties]></asp:ButtonField>

2. Replace the “asp” namespace with “des”.

<des:ButtonField [properties]></des:ButtonField>

3. If you want the button to perform validation, set the CausesValidation property to true. (It defaults to false.)

4. If you want the Group property assigned to something other than "", add it directly:

<des:ButtonField Group="GroupName" [properties]></des:ButtonField>

If you make each row GridView editable and only want a Button to evaluated its own row, add a plus (+) character as the
first character of the Group property on the ButtonField and all Validators.

For example, Group="+GridView".

Note: The ButtonField already has a ValidationGroup property which is basically the same as the Group property. You
can use either. If the Group property is assigned, it always overrides the ValidationGroup property.

5. If you have set up a RowUpdating event handler and want to validate on the server side, you must call
PeterBlum.DES.Globals.Page.Validate(validationgroupname) before testing
PeterBlum.DES.Globals.Page.IsValid. (Validation will happen on the client-side so long as
CausesValidation=true.) If IsValid is false, set the args parameter’s Cancel property to true and do not save.

See “Validating With All Other PostBack Event Handlers”.

6. For additional properties, see “Properties on DES’s Button, LinkButton, and ImageButton Controls”.

http://msdn2.microsoft.com/library/44ayfk42(en-us,vs.80).aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 266 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

DES’s Submit Controls For The DataGrid
The DataGrid works well with all DES controls. However, its System.Web.UI.WebControls.EditCommandColumn and
System.Web.UI.WebControls.ButtonColumn classes do not set up client or server side validation with DES’s framework.
They create buttons for a DataGrid row using Microsoft’s Button or LinkButton classes. DES needs buttons to support its
client side and server side validation.

DES supplies new versions of EditCommandColumn and ButtonColumn that automatically validate and offer other useful
features.

Using the EditCommandColumn Control

DES provides a replacement to EditCommandColumn, PeterBlum.DES.EditCommandColumn. It is a direct subclass
of System.Web.UI.WebControls.EditCommandColumn that provides DES validation and additional properties.

To use PeterBlum.DES.EditCommandColumn through design mode or HTML view in your editor:

1. Add the native EditCommandColumn to the DataGrid.

<asp:EditCommandColumn ButtonType="PushButton" UpdateText="Update"
CancelText="Cancel" EditText="Edit"></asp:EditCommandColumn>

2. Replace the “asp” namespace with “des”.

<des:EditCommandColumn ButtonType="PushButton" UpdateText="Update"
CancelText="Cancel" EditText="Edit"></des:EditCommandColumn>

3. If you want the Group property assigned to something other than "", add it directly:

<des:EditCommandColumn Group="GroupName" ButtonType="PushButton"
UpdateText="Update" CancelText="Cancel" EditText="Edit">
</des:EditCommandColumn>

If you make each row DataGrid editable and only want a Button to evaluated its own row, add a plus (+) character as the
first character of the Group property on the EditCommandColumn and all Validators.

For example, Group="+Row".

4. If you have set up an UpdateCommand event handler and want to validate on the server side, you must call
PeterBlum.DES.Globals.Page.Validate(validationgroupname) before testing
PeterBlum.DES.Globals.Page.IsValid. (Validation will happen on the client-side so long as
CausesValidation=true.) If IsValid is false, do not save and do not change the value of EditItemIndex to -1.

See “Validating With All Other PostBack Event Handlers”.

5. For additional properties, see “Properties on DES’s Button, LinkButton, and ImageButton Controls”.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.editcommandcolumn(VS.71).aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.buttoncolumn(vs.71).aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.editcommandcolumn(VS.71).aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 267 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Using the ButtonColumn Control

DES provides a replacement to ButtonColumn, PeterBlum.DES.ButtonColumn. It is a direct subclass of
System.Web.UI.WebControls.ButtonColumn that provides DES validation and additional properties.

To use PeterBlum.DES.ButtonColumn through design mode or HTML view in your editor:

1. Add the native ButtonColumn to the DataGrid.

<asp:ButtonColumn ButtonType="PushButton" Text="Delete"></asp:ButtonColumn>

2. Replace the “asp” namespace with “des”.

<des:ButtonColumn ButtonType="PushButton" Text="Delete"></des:ButtonColumn>

3. If you want the button to perform validation, set the CausesValidation property to true. (It defaults to false.)

4. If you want the Group property assigned to something other than "", add it directly:

<des:ButtonColumn Group="GroupName" ButtonType="PushButton" Text="Delete">
</des:ButtonColumn>

If you make each row DataGrid editable and only want a Button to evaluated its own row, add a plus (+) character as the
first character of the Group property on the ButtonColumn and all Validators.

For example, Group="+Row".

5. If you have set up an ItemCommand event handler and want to validate on the server side, you must call
PeterBlum.DES.Globals.Page.Validate(validationgroupname) before testing
PeterBlum.DES.Globals.Page.IsValid. (Validation will happen on the client-side so long as
CausesValidation=true.) If IsValid is false, do not save and do not change the value of EditItemIndex to -1.

See “Validating With All Other PostBack Event Handlers”.

6. For additional properties, see “Properties on DES’s Button, LinkButton, and ImageButton Controls”.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.buttoncolumn(vs.71).aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 268 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Using Native Button Controls to Submit the Page
The ASP.NET framework includes a number of controls that can submit the page with ASP.NET. They do not have built in
support to validate on the client or server side when clicked. If you intend them to validate on the client-side, you must take
one of these actions:

 Replace them with equivalent controls supplied in DES. See “DES’s Button, LinkButton, and ImageButton Controls”.

 Assign a NativeControlExtender control to them. See the General Features Guide for details. This only provides
client-side validation. You must also setup server side validation within the button’s Click or Command event handler
method. See “Validating With All Other PostBack Event Handlers”.

Example
<asp:Button id="Button1" runat="server" Text="Submit" />
<des:NativeControlExtender id="ExtendButton1" runat="server"
 ControlIDToExtend="Button1" Group="Group1" />

 When writing code:

o For Button, LinkButton, and ImageButton, use the RegisterSubmitControl() method. See below.

o For composite controls that contain buttons, use the RegisterChildSubmitControls() method. See
below.

This only provides client-side validation. You must also setup server side validation within the button’s Click or
Command event handler method. See “Validating With All Other PostBack Event Handlers”.

Click on any of these topics to jump to them:

 The RegisterSubmitControl method

 The PeterBlum.DES.SubmitBehavior Class

 The RegisterChildSubmitControls method

 The PeterBlum.DES.ChildSubmitBehavior Class

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 269 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

The RegisterSubmitControl method

Use RegisterSubmitControl() to register a native Button, LinkButton, or ImageButton control. It establishes client-
side validation for the control with an associated validation group name. You still must set up server side validation in your
Click or Command event handler methods. It also establishes other properties if you have a license that covers the Peter’s
Interactive Pages module.

RegisterSubmitControl() is a method on PeterBlum.DES.Globals.Page.SubmitPageManager. Generally it is
called in Page_Load() because validation happens immediately after Page_Load(). If you create the button
programmatically, call RegisterSubmitControl() at the same time.

[C#]

void RegisterSubmitControl(PeterBlum.DES.SubmitBehavior pSubmitBehavior)

[VB]

Sub RegisterSubmitControl(ByVal pSubmitBehavior As PeterBlum.DES.SubmitBehavior)

Use these steps to attach your native button.

1. Create a PeterBlum.DES.SubmitBehavior object. The constructor takes a reference to your control. See
“Constructors”.

2. Assign the desired properties. See “Properties”.

3. Pass the object to PeterBlum.DES.Globals.Page.SubmitPageManager.RegisterSubmitControl().

4. Set up server side validation within the button’s Click or Command event handler method. See “Validating With All
Other PostBack Event Handlers”.

Example

Adds validation group “group1” and sets DisableOnSubmit to true on Button1.

[C#]

PeterBlum.DES.SubmitBehavior vSubmitBehavior =
 new PeterBlum.DES.SubmitBehavior(Button1);
vSubmitBehavior.Group = "group1";
vSubmitBehavior.DisableOnSubmit = true;
PeterBlum.DES.Globals.Page.SubmitPageManager.RegisterSubmitControl(vSubmitBehavior);

// also set up server side validation in Button1_Click

[VB]

Dim vSubmitBehavior As PeterBlum.DES.SubmitBehavior = _
 New PeterBlum.DES.SubmitBehavior(Button1)
vSubmitBehavior.Group = "group1"
vSubmitBehavior.DisableOnSubmit = True
PeterBlum.DES.Globals.Page.SubmitPageManager.RegisterSubmitControl(vSubmitBehavior)

' also set up server side validation in Button1_Click

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 270 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

The PeterBlum.DES.SubmitBehavior Class

Properties

 SubmitControl (System.Web.UI.WebControl.Control) – The control that is getting the additional functionality. It is
always assigned the constructor of this class.

 Group (string) – Only used by the DES Validation Framework. Group determines which validators are invoked when
this button is clicked. Those that match the value in this will be run.

Group names are blank by default. When left blank, this runs all validators whose Group property is also blank.

You can also use the string "*" to run every validator on the page.

When the button is shown on multiple rows (naming containers) of a GridView, DataGrid or Repeater, you can make
each row have a unique group name by adding a plus (+) character as the first character of the group name. (This is
supported for multiple group names with "+groupname|+groupname2".)

Just be sure to use an identical name in the validators associated with this button.

It defaults to "".

 CausesValidation (string) – Determines if the button fires DES Framework Validators on the client side. When true it
does.

It defaults to true.

It only validates on the client-side. You must still setup server side validation within the button’s Click or Command
event handler method. See “Validating With All Other PostBack Event Handlers”.

 ConfirmMessage (string) – Requires a license covering the Interactive Pages module. Displays a confirmation message
when the button is clicked. It uses the JavaScript function confirm() which shows the text of this property and offers
OK and Cancel buttons. (You cannot customize the title or buttons.) When the user clicks OK, the page will submit. If
they click Cancel, it will not.

When using the DES Validation Framework on this page, it has its own confirmation message in
PeterBlum.DES.Globals.Page.ConfirmMessage. When assigned, this button’s property overrides the other property.
You also need to determine if the confirmation message shows prior to validation or after validation reports no errors.
Use the PeterBlum.DES.Globals.Page.SubmitOrder property, which by default shows the confirmation message
before it attempts to validate.

When using the ChangeMonitor, the confirmation message can appear based on the changed state of the page. Use the
ChangeMonitorUsesConfirm property.

 DisableOnSubmit (Boolean) – Requires a license covering the Interactive Pages module. When true, the control will
be disabled after the page submits. If an AJAX callback is used, it disables and re-enables when the callback is
completed. To disable, DES sets the disabled property to true in the HTML element for the Submit control. If that
element is an <input type="image"> or , it changes the opacity of the control to dim it.

It defaults to false.

 MayMoveOnClick (Boolean) – If the button requires an extra click to submit the page, its because it jumped as the user
clicks on it. Set this to true to avoid that extra click.

This solves the following problem:

When the user edits a control and immediately clicks on the button, the onchange event of the control fires, running
validation. If validation removes error message and the ValidationSummary, the button may jump. This happens before
the button's onclick event, preventing that onclick event to run because the mouse button is no longer on the button.

When true, the feature is enabled.

It defaults to false.

 ChangeMonitorEnables (enum PeterBlum.DES.ChangeMonitorEnablesSubmitControl) – Requires a license covering
the Interactive Pages module. Determines if the button switches its state between disabled and enabled. When enabled,
the button is disabled as the page is loaded. After the first edit, it becomes enabled.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 271 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

The enumerated type PeterBlum.DES.ChangeMonitorEnablesSubmitControl has these values:

o No - The button will not change its enable state.

o Yes - The button will change its enabled state.

o CausesValidationIsTrue - When the button's CausesValidation property is true, it will change its
enabled state.

o CausesValidationIsFalse - When the button's CausesValidation property is false, it will change its
enabled state.

It defaults to ChangeMonitorEnablesSubmitControl.CausesValidationIsTrue.

Note: ImageButtons normally do not have a visual appearance for disabled. DES’s ImageButtons change their
appearance by changing the opacity of the button when the state is changed by the ChangeMonitor.

 ChangeMonitorUsesConfirm (enum PeterBlum.DES.ChangeMonitorUsesConfirm) – Requires a license covering the
Interactive Pages module. When the button uses a confirmation message from its ConfirmMessage property, it normally
displays the message on any click. When using the ChangeMonitor, you can make it display based on the changed state
of the page. Use the ChangeMonitorUsesConfirm property on the button.

The enumerated type PeterBlum.DES.ChangeMonitorUsesConfirm has these values:

o No - ChangeMonitor does not affect the confirmation message.

o Changed - Only show the confirmation message if changes were made.

o NotChanged - Only show the confirm message if NO changes were made.

It defaults to ChangeMonitorUsesConfirm.No.

 InAJAXUpdate (Boolean) – When using AJAX on this page, set this to true if the control is involved in an AJAX
update. See “Using These Controls with AJAX” in the General Features Guide. It defaults to false.

Constructors

The following constructors have parameters that match various properties shown above.

[C#]

SubmitBehavior(Control pSubmitControl)

SubmitBehavior(Control pSubmitControl, string pValidationGroup)

SubmitBehavior(Control pSubmitControl, string pValidationGroup,
 string pConfirmMessage)

[VB]

SubmitBehavior(ByVal pSubmitControl As Control)

SubmitBehavior(ByVal pSubmitControl As Control, _
 ByVal pValidationGroup As String)

SubmitBehavior(ByVal pSubmitControl As Control, _
 ByVal pValidationGroup As String, _
 ByVal pConfirmMessage As String)

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 272 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

The RegisterChildSubmitControls method

Use RegisterChildSubmitControls() when you have a composite control that contains one or more native submit
controls. This method will find any controls of the following classes and set up client-side validation:
System.Web.UI.WebControls.Button, System.Web.UI.WebControls.LinkButton, and
System.Web.UI.WebControls.ImageButton. You still must set up server side validation in your Click or Command event
handler methods. It also establishes other properties if you have a license that covers the Peter’s Interactive Pages module.

RegisterChildSubmitControls() is a method on PeterBlum.DES.Globals.Page.SubmitPageManager. Generally
it is called in Page_Load() because validation happens immediately after Page_Load(). If you create the containing
control programmatically, call RegisterChildSubmitControls() at the same time.

In order for a third party control to be supported, it must create child controls of the above classes before you call
RegisterChildSubmitControls(). If you use RegisterChildSubmitControls() and it doesn’t work, the
third party control cannot be used with client-side validation. You can still support server side validation by calling the
PeterBlum.DES.Globals.Page.Validate() method in a post back event handler of the third party control.

[C#]

void RegisterChildSubmitControls(Control pParentControl,
 PeterBlum.DES.ChildSubmitBehavior pSubmitBehavior,
 bool pUnused, bool pShallowSearch,
 string pDeleteID)

[VB]

Sub RegisterChildSubmitControls(ByVal pParentControl As Control,
 ByVal pSubmitBehavior As PeterBlum.DES.ChildSubmitBehavior,
 ByVal pUnused As Boolean, ByVal pShallowSearch As Boolean,
 ByVal pDeleteID As String)

Parameters

pParentControl

The container control whose children will be scanned for buttons.

pSubmitBehavior

The rules to apply to each child button found, including validation, confirm message (only on those that cause
validation), disable on submit, and change monitor.

pUnused

Pass false.

pShallowSearch

When true, only update the immediate children; when false, update all children in the tree.

pDeleteID

If you need to delete this button using
PeterBlum.DES.Globals.Page.SubmitPageManager.DeleteSubmitControls(), assign this to
the name that you will use with DeleteSubmitControls. If not used, pass "".

Use these steps to attach your native button.

1. Create a PeterBlum.DES.ChildSubmitBehavior object. The constructor takes a reference to your control. See
“Constructors”.

2. Assign the desired properties. See “Properties”.

3. Pass the object to
PeterBlum.DES.Globals.Page.SubmitPageManager.RegisterChildSubmitControls().

4. Set up server side validation within the event handler methods used by this control. See “Validating With All Other
PostBack Event Handlers”.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 273 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Example

Adds validation group “group1” and sets DisableOnSubmit to on the child buttons of Panel1.

[C#]

PeterBlum.DES.ChildSubmitBehavior vSubmitBehavior =
 new PeterBlum.DES.ChildSubmitBehavior();
vSubmitBehavior.Group = "group1";
vSubmitBehavior.DisableOnSubmit = true;
PeterBlum.DES.Globals.Page.SubmitPageManager.RegisterChildSubmitControls(
 Panel1, vSubmitBehavior, false, true, "");

// also set up server side validation in Button1_Click

[VB]

Dim vSubmitBehavior As PeterBlum.DES.ChildSubmitBehavior = _
 New PeterBlum.DES.ChildSubmitBehavior()
vSubmitBehavior.Group = "group1"
vSubmitBehavior.DisableOnSubmit = True
PeterBlum.DES.Globals.Page.SubmitPageManager.RegisterChildSubmitControls(
 Panel1, vSubmitBehavior, False, True, "");

' also set up server side validation in Button1_Click

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 274 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

The PeterBlum.DES.ChildSubmitBehavior Class

Properties

 Group (string) – Only used by the DES Validation Framework. Group determines which validators are invoked when
this button is clicked. Those that match the value in this will be run.

Group names are blank by default. When left blank, this runs all validators whose Group property is also blank.

You can also use the string "*" to run every validator on the page.

When the button is shown on multiple rows (naming containers) of a GridView, DataGrid or Repeater, you can make
each row have a unique group name by adding a plus (+) character as the first character of the group name. (This is
supported for multiple group names with "+groupname|+groupname2".)

Just be sure to use an identical name in the validators associated with this button.

It defaults to "".

 CausesValidation (string) – Determines if the button fires DES Framework Validators on the client side. When true it
does.

It defaults to true.

It only validators on the client-side. You still must set up server side validation in your control’s post back event handler
method like this:

[C#]

PeterBlum.DES.Globals.Page.Validate("validation group name");
if (PeterBlum.DES.Globals.Page.IsValid)
{
 // save or use the page data here
}

[VB]

PeterBlum.DES.Globals.Page.Validate("validation group name")
If PeterBlum.DES.Globals.Page.IsValid Then
 ' save or use the page data here
End If

If you have no validation group, you can pass "" or call Validate() without any parameter.

 ConfirmMessage (string) – Requires a license covering the Peter’s Interactive Pages module. Displays a confirmation
message when the button is clicked. It uses the JavaScript function confirm() which shows the text of this property
and offers OK and Cancel buttons. (You cannot customize the title or buttons.) When the user clicks OK, the page will
submit. If they click Cancel, it will not.

When using the DES Validation Framework on this page, it has its own confirmation message in
PeterBlum.DES.Globals.Page.ConfirmMessage. When assigned, this button’s property overrides the other property.
You also need to determine if the confirmation message shows prior to validation or after validation reports no errors.
Use the PeterBlum.DES.Globals.Page.SubmitOrder property, which by default shows the confirmation message
before it attempts to validate.

When using the ChangeMonitor, the confirmation message can appear based on the changed state of the page. Use the
ChangeMonitorUsesConfirm property.

 DisableOnSubmit (Boolean) – Requires a license covering the Interactive Pages module. When true, the control will
be disabled after the page submits. If an AJAX callback is used, it disables and re-enables when the callback is
completed. To disable, DES sets the disabled property to true in the HTML element for the Submit control. If that
element is an <input type="image"> or , it changes the opacity of the control to dim it.

It defaults to false.

 MayMoveOnClick (Boolean) – If the button requires an extra click to submit the page, its because it jumped as the user
clicks on it. Set this to true to avoid that extra click.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 275 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

This solves the following problem:

When the user edits a control and immediately clicks on the button, the onchange event of the control fires, running
validation. If validation removes error message and the ValidationSummary, the button may jump. This happens before
the button's onclick event, preventing that onclick event to run because the mouse button is no longer on the button.

When true, the feature is enabled.

It defaults to false.

 ChangeMonitorEnables (enum PeterBlum.DES.ChangeMonitorEnablesSubmitControl) – Requires a license covering
the Interactive Pages module. Determines if the button switches its state between disabled and enabled. When enabled,
the button is disabled as the page is loaded. After the first edit, it becomes enabled.

The enumerated type PeterBlum.DES.ChangeMonitorEnablesSubmitControl has these values:

o No - The button will not change its enable state.

o Yes - The button will change its enabled state.

o CausesValidationIsTrue - When the button's CausesValidation property is true, it will change its
enabled state.

o CausesValidationIsFalse - When the button's CausesValidation property is false, it will change its
enabled state.

It defaults to ChangeMonitorEnablesSubmitControl.CausesValidationIsTrue.

Note: ImageButtons normally do not have a visual appearance for disabled. DES’s ImageButtons change their
appearance by changing the opacity of the button when the state is changed by the ChangeMonitor.

 ChangeMonitorUsesConfirm (enum PeterBlum.DES.ChangeMonitorUsesConfirm) – Requires a license covering the
Interactive Pages module. When the button uses a confirmation message from its ConfirmMessage property, it normally
displays the message on any click. When using the ChangeMonitor, you can make it display based on the changed state
of the page. Use the ChangeMonitorUsesConfirm property on the button.

The enumerated type PeterBlum.DES.ChangeMonitorUsesConfirm has these values:

o No - ChangeMonitor does not affect the confirmation message.

o Changed - Only show the confirmation message if changes were made.

o NotChanged - Only show the confirm message if NO changes were made.

It defaults to ChangeMonitorUsesConfirm.No.

 InAJAXUpdate (Boolean) – When using AJAX on this page, set this to true if the control is involved in an AJAX
update. See “Using These Controls with AJAX” in the General Features Guide. It defaults to false.

Constructors

The following constructors have parameters that match various properties shown above.

[C#]

ChildSubmitBehavior()

ChildSubmitBehavior(string pValidationGroup)

ChildSubmitBehavior(string pValidationGroup,
 string pConfirmMessage)

ChildSubmitBehavior(string pValidationGroup,
 string pConfirmMessage, bool pDisableOnSubmit,
 bool pMayMoveOnClick, bool pInAJAXUpdate)

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 276 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 [VB]

ChildSubmitBehavior()

ChildSubmitBehavior(ByVal pValidationGroup As String)

ChildSubmitBehavior(ByVal pValidationGroup As String, _
 ByVal pConfirmMessage As String)

ChildSubmitBehavior(ByVal pValidationGroup As String, _
 ByVal pConfirmMessage As String, ByVal pDisableOnSubmit As Boolean,
 ByVal pMayMoveOnClick As Boolean, ByVal pInAJAXUpdate As Boolean)

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 277 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Using the Menu Control to Validate the Page
Note: For third party Menu controls, see the Using Third Party Controls guide.

The System.Web.UI.WebControls.Menu control runs commands which often submit the page. Often those commands should
validate the page before allowing a postback. Here’s how to set it up.

1. Assign the token “{SUBMIT}” to NavigateUrl property of any MenuItem that needs validation.

The “{SUBMIT}” token takes additional parameters to define the validation group and elect to use the confirmation
message. The parameters are in this colon delimited format:

{SUBMIT:group=[validationgroupname]:confirm}

When :group= is defined, validation is used with the validation group name specified. It supports a single group name
or “*”. For the blank group name, just use group=.

When :confirm is used, show the confirmation message. If validation is also used, the confirmation message will
appear in the order determined by the SubmitOrder property on the PageManager control or
PeterBlum.DES.Globals.Page. Note: the ConfirmMessage feature requires a license that covers the Peter’s Interactive
Pages module.

<asp:Menu ID="Menu1" runat="server" OnMenuItemClick="Menu1_MenuItemClick">
 <Items>
 <asp:MenuItem Text="Confirm and validate" Value="Confirm and validate"
 NavigateUrl="{SUBMIT:group=:confirm}"></asp:MenuItem>
 <asp:MenuItem Text="Confirm" Value="Confirm"
 NavigateUrl="{SUBMIT:confirm}"></asp:MenuItem>
 <asp:MenuItem Text="New Item3" Value="New Item3">
 <asp:MenuItem Text="Validate group 1" Value="New Item 3.1"
 NavigateUrl="{SUBMIT:group=group1}"></asp:MenuItem>
 <asp:MenuItem Text="Validate group 1 and confirm" Value="New Item 3.2"
 NavigateUrl="{SUBMIT:group=group1:confirm}"></asp:MenuItem>
 <asp:MenuItem Text="Nothing" Value="Nothing" ></asp:MenuItem>
 </asp:MenuItem>
 </Items>
</asp:Menu>

2. Attach NativeControlExtender control to the Menu control or call
PeterBlum.DES.Globals.Page.SubmitPageManager.PrepareMicrosoftMenuControl(). See
below.

Using the NativeControlExtender

Attach the NativeControlExtender to the Menu control. If you want the confirmation message, set the message in the
ConfirmMessage property of the NativeControlExtender. See the General Features Guide for the
NativeControlExtender.

Here is an example with the NativeControlExtender attached to the above Menu control:

<des:NativeControlExtender id="ExtendMenu1" runat="server"
ControlIDToExtend="Menu1" ConfirmMessage="Continue?" />

Using the PrepareMicrosoftMenuControl() method

The PrepareMicrosoftMenuControl() method is on PeterBlum.DES.Globals.Page.SubmitPageManager.
Call it in Page_Load(). Here is a usage example with the same menu definition shown above and with the
confirmation message of “Continue?”:

PeterBlum.DES.Globals.Page.SubmitPageManager.PrepareMicrosoftMenuControl
 Menu1, "Continue?")

3. Set up server side validation within the MenuItemClick event handler method. See “Validating With All Other PostBack
Event Handlers”.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.menu.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 278 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

The PrepareMicrosoftMenuControl() method

This method on PeterBlum.DES.Globals.Page.SubmitPageManager takes a System.Web.UI.WebControls.Menu control
and applies DES client-side validation to any of its MenuItems whose NavigateUrl contains the {SUBMIT} token. See the
steps above for details on the {SUBMIT} token.

[C#]

void PrepareMicrosoftMenuControl(System.Web.UI.WebControls.Menu pMenu,
 string pConfirmMessage)

[VB]

Sub PrepareMicrosoftMenuControl(ByVal pMenu As System.Web.UI.WebControls.Menu,
 ByVal pConfirmMessage As String)

Parameters

pMenu

The System.Web.UI.WebControls.Menu with its MenuItems already setup with the {SUBMIT} token.

pConfirmMessage

An optional confirmation message. It requires the {SUBMIT} token has the :confirm parameter and a license
covering Peter’s Interactive Pages module. Otherwise, it is ignored. If you don’t want a confirmation message,
pass "".

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.menu.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.menu.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 279 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Using the BulletedList Control
The System.Web.UI.WebControls.BulletedList control can be set up to submit the page by setting its DisplayMode property
to LinkButton. Since it posts back, you can have it invoke DES validation and optionally prompt with a confirmation
message.

Steps to set up the BulletedList Control

1. Set up the BulletedList be sure to set these properties to their desired values:

 CausesValidation – Set to true when validation should occur and false when it should not.

 ValidationGroup – The Validation group name. If CausesValidation is false, this is ignored.

 DisplayMode – It must be set LinkButton to establish validation.

<asp:BulletedList id="BulletedList1" runat="server" DisplayMode="ListButton"
 CausesValidation="true" ValidationGroup="Group1" />

2. Attach NativeControlExtender control to the Menu control or call
PeterBlum.DES.Globals.Page.SubmitPageManager.RegisterBulletedListControl(). See
below.

Using the NativeControlExtender

Attach the NativeControlExtender to the BulletedList control. If you want the confirmation message, set the message in
the ConfirmMessage property of the NativeControlExtender. See the General Features Guide for the
NativeControlExtender.

Here is an example with the NativeControlExtender attached to the above BulletedList control:

<des:NativeControlExtender id="ExtendBulletedList1" runat="server"
ControlIDToExtend="BulletedList1" ConfirmMessage="Continue?" />

Using the RegisterBulletedListControl() method

The RegisterBulletedListControl() method is on PeterBlum.DES.Globals.Page.SubmitPageManager.
Call it in Page_Load(). Here is a usage example with the same menu definition shown above and with the
confirmation message of “Continue?”:

PeterBlum.DES.Globals.Page.SubmitPageManager.RegisterBulletedListControl
 BulletedList1, "Continue?", false)

3. Set up server side validation within the MenuItemClick event handler method. See “Validating With All Other PostBack
Event Handlers”.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.bulletedlist.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 280 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

The RegisterBulletedListControl() method

This method on PeterBlum.DES.Globals.Page.SubmitPageManager takes a System.Web.UI.WebControls.BulletedList
control and applies DES client-side validation to all of its items.

[C#]

void RegisterBulletedListControl(
 System.Web.UI.WebControls.BulletedList pBulletedList,
 string pConfirmMessage, bool pInPreRender)

[VB]

Sub RegisterBulletedListControl(
 ByVal pBulletedList As System.Web.UI.WebControls.BulletedList,
 ByVal pConfirmMessage As String, ByVal pInPreRender As Boolean)

Parameters

pBulletedList

The System.Web.UI.WebControls.BulletedList control.

pConfirmMessage

An optional confirmation message. It requires a license covering Peter’s Interactive Pages module. Otherwise, it is
ignored. If you don’t want a confirmation message, pass "".

pInPreRender

If this method is called from the PreRender method, pass true. Otherwise pass false.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.bulletedlist.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.bulletedlist.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 281 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Using AJAX Callback Controls
AJAX is a technology that allows the browser to request information from the server without a post back. This is called a
“callback”. There are numerous products which support AJAX, including Microsoft ASP.NET AJAX, Telerik’s radAjax, and
Magic AJAX.

There are a few types of controls that can make a callback. They include “update panels”, buttons and other controls. Each of
these are addressed in the following sections.

Update panels

Each of these AJAX frameworks has a control that identifies a group of web controls whose HTML is replaced on the
callback. Microsoft ASP.NET AJAX calls its control an UpdatePanel; radAjax offers its radAjaxManager and radAjaxPanel;
Magic AJAX calls its control an AjaxPanel. When any of these “update panels” are on the page, you must do some extra set
up to assist DES. See “Using these controls with AJAX” in the General Features Guide.

Buttons

Buttons that invoke a callback do not run the <form onsubmit=> event that is normally used to submit a page. That’s where
DES sets up its validation code. For these controls, you need to use the The RegisterCallbackControl() method, described
below.

Note: If the Button is involved with an “update panel”, do not use RegisterCallbackControl(). Instead use the directions in
“Using these controls with AJAX” in the General Features Guide.

Other controls

Some vendors provide callback features in other controls, including textboxes, lists, and images. If you want validation to run
prior to the callback, use the The RegisterCallbackControl() method.

The RegisterCallbackControl() method

The RegisterCallbackControl() method is on PeterBlum.DES.Globals.Page.SubmitPageManager.

Use RegisterCallbackControl() to register a control that invokes a callback, when you want validation to occur
first. This method optionally sets up a confirmation message prompt. If validation fails or the user clicks Cancel on the
confirmation message, the callback will not be invoked.

ALERT: Do not use this method with an AJAX Update Panel control.

When you pass a control subclassed from Microsoft’s TextBox, DropDownList or ListBox, it will hook up its code to the
onchange event of that control. For all other cases, it will add code to the onclick event.

When the callback is received on the server side, you should still validate the data merely as a defense against hackers who
modify the scripts of your page to work around client-side validation. See “Properties and Methods to Validate the Page”.

[C#]

public void RegisterCallbackControl(Control pControl,
 string pGroup,
 string pConfirmMessage);

[VB]

Public Sub RegisterCallbackControl(ByVal pControl As Control, _
 ByVal pGroup As String, _
 ByVal pConfirmMessage As String)

Parameters

pControl

The control to be registered. It must have its ID property assigned or it will throw an exception. (The ID is required
to get the client-side to locate the control on the page.)

ALERT: Do not use this method with an AJAX Update Panel control.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 282 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

pGroup

The group name to be associated with this submit control. It can be "".

pConfirmMessage

It establishes the text of a confirm messagebox that will appear when the submit control is clicked. It will show this
message along with buttons for OK and Cancel. If the user clicks Cancel, it will not submit the page.

This feature is only supported with a license for the Peter’s Interactive Pages. If you do not have a license, pass "".

If you need a carriage return within the message, use the token “{NEWLINE}” (all capital letters) where the return
should go.

Example

This example connects a button control from Telerik’s radCallback to the group “Login”.

[C#]

protected System.Web.UI.WebControls.Button Button1;

protected void Page_Load(object sender, System.EventArgs e)
{
 PeterBlum.DES.Globals.Page.SubmitPageManager.RegisterCallbackControl(
 CallbackButton1, "Login", "");
}

[VB]

Protected WithEvents Button1 As System.Web.UI.WebControls.Button

Protected Sub Page_Load(ByVal sender As object, ByVal e As System.EventArgs)
 PeterBlum.DES.Globals.Page.SubmitPageManager.RegisterCallbackControl(_
 CallbackButton1, "Login", "")
End Sub

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 283 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Using Validation with AutoPostBack
AutoPostBack is when an edit to a data entry control immediately posts back. DES’s TextBox controls can validate on
AutoPostBack by setting the AutoPostBackValidates property to true. With the addition of the NativeControlExtender,
other data entry controls can also validate on AutoPostBack by setting the NativeControlExtender’s AutoPostBackValidates
property to true.

Click on any of these topics to jump to them:

 How to Add DES Validation to AutoPostBack

 AutoPostBack with Peter’s Date Package TextBoxes

 Overcoming a bug in Google Chrome 1

In ASP.NET 2+, TextBoxes, Lists, CheckBoxes, and most other data entry controls have the ValidationGroup and
CausesValidation properties to implement validation by validation group prior to AutoPostBack. These properties extend
DES’s validation scope.

 To validate on the validators assigned to the data entry control, set AutoPostBackValidates to true. Set
CausesValidation to false.

 To validate all validators within a validation group, set AutoPostBackValidates and CausesValidation to true. Set
the validation group name in ValidationGroup.

Note: These features only provide client-side validation. The intent is to block a postback if validation fails.

How to Add DES Validation to AutoPostBack

Follow these steps to set up AutoPostBack on a data entry control with client-side DES validation:

1. Set the control’s AutoPostBack property to true.

2. If you are using any of DES’s TextBox controls, set its AutoPostBackValidates, CausesValidation, and
ValidationGroup properties as needed. You are finished.

3. If you are using any other control with the AutoPostBack property, add the NativeControlExtender to the page and
assign its ControlIDToExtend property to your data entry control. Set these NativeControlExtender properties as
needed: AutoPostBackValidates and Group. You are finished. The NativeControlExtender ignores the
CausesValidation property found on the data entry control.

4. If you are using any of “Peter’s Date Package” TextBox controls, see “AutoPostBack with Peter’s Date Package
TextBoxes”.

5. For all remaining controls (those that don’t have their own autopostback property), establish the onchange= or onclick=
attribute to use PeterBlum.DES.Globals.Page.GetPostBackEventReference(). TextBoxes, ListBoxes,
and DropDownLists support onchange=. CheckBoxes and RadioButtons support onclick=.

Only run the Validators assigned to the Data Entry Control

[C#]

TextBox1.Attributes.Add("onchange",
 PeterBlum.DES.Globals.Page.GetPostBackEventReference(
 TextBox1, "groupname");

[VB]

TextBox1.Attributes.Add("onchange", _
 PeterBlum.DES.Globals.Page.GetPostBackEventReference(_
 TextBox1, "groupname")

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 284 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Validate an entire Validation Group

ASP.NET 2.0 Users Only

This uses the System.Web.UI.PostBackOptions class to describe the auto post back options and the ability to track focus.

[C#]

TextBox1.Attributes.Add("onchange",
 PeterBlum.DES.Globals.Page.GetPostBackEventReference(
 new PostBackOptions(TextBox1,
 "", /* argument */
 "", /* actionUrl */
 true, /*AutoPostBack*/
 false, /* requiresJavascriptProtocal */
 true, /* trackFocus – can be true or false as you like */
 true, /* clientSubmit */
 true, /* performvalidation */
 "groupname")); /* validation group name */

[VB]

TextBox1.Attributes.Add("onchange", _
 PeterBlum.DES.Globals.Page.GetPostBackEventReference(_
 New PostBackOptions(TextBox1, _
 "", ' argument _
 "", ' actionUrl _
 True, ' AutoPostBack _
 False, ' requiresJavascriptProtocal _
 True, ' trackFocus – can be True or False as you like _
 True, ' clientSubmit _
 True, ' performvalidation _
 "groupname")) ' validation group name

http://msdn2.microsoft.com/library/xt3e2c7e(en-us,vs.80).aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 285 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

AutoPostBack with Peter’s Date Package TextBoxes

The TextBoxes within Peter’s Date Package (www.PeterBlum.com) require a slightly more complex onchange= attribute.

For DateTextBox, MonthYearTextBox and AnniversaryTextBox, use:

[C#]

DateTextBox1.xAutoPostBackB = false;
DateTextBox1.Attributes.Add("onchange",
 "javascript: if (DTB_OnChange('" + DateTextBox1.ClientID + "')) { " +
 PeterBlum.DES.Globals.Page.GetPostBackEventReference(DateTextBox1,
 "groupname") + "; };");

[VB]

DateTextBox1.xAutoPostBackB = False
DateTextBox1.Attributes.Add("onchange", _
 "javascript: if (DTB_OnChange('" + DateTextBox1.ClientID + "')) { " + _
 PeterBlum.DES.Globals.Page.GetPostBackEventReference(DateTextBox1, _
 "groupname") + "; };");

For TimeOfDayTextBox and DurationTextBox, use:

[C#]

TimeOfDayTextBox1.xAutoPostBackB = false;
TimeOfDayTextBox1.Attributes.Add("onchange",
 "javascript: if (TMTB_OnChange('" + TimeOfDayTextBox1.ClientID +
 "','[DateTextBoxClientID]')) { " +
 PeterBlum.DES.Globals.Page.GetPostBackEventReference(TimeOfDayTextBox1,
 "groupname") + "; };");

[VB]

TimeOfDayTextBox1.xAutoPostBackB = False
TimeOfDayTextBox1.Attributes.Add("onchange", _
 "javascript: if (TMTB_OnChange('" + TimeOfDayTextBox1.ClientID + _
 "','[DateTextBoxClientID]')) { " + _
 PeterBlum.DES.Globals.Page.GetPostBackEventReference(TimeOfDayTextBox1, _
 "groupname") + "; };");

[DateTextBoxClientID] is an empty string when TimeOfDayTextBox.xDateTextBoxControlID is unassigned and the
ClientID of the DateTextBox specified in TimeOfDayTextBox.xDateTextBoxControlID otherwise. DurationTextBox
always uses an empty string for [DateTextBoxClientID].

Overcoming a bug in Google Chrome 1

When a DropDownList has AutoPostBack set to true and you assign a DES validator to that DropDownList, Google
Chrome v1 will generate a JavaScript error. Use the NativeControlExtender to avoid this. Add it to any DropDownList whose
AutoPostBack property is set to true and has validators.

Internally the NativeControlExtender swaps the original AutoPostBack scripts with alternatives that work with all browsers.

http://www.peterblum.com/�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 286 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Submitting the Page: Client-Side Validation
Client-side validation is attached to a few objects on the page: Validators and submit controls. DES automatically sets up
client-side validation on Validators unless:

 The EnableClientScript property is false.

 The Enabled property is false.

 The PeterBlum.DES.Globals.Page.JavaScriptEnabled property is false. This happens when the user has turned off
JavaScript on their browser or the browser does not support client-side validation.

 The PeterBlum.DES.Globals.Page.Browser.SupportsClientSideValidators property is false. This happens when
the browser does not support DES’s scripts. See “The TrueBrowser Class” in the General Features Guide.

Submit controls automatically run validation on a validation group prior to submitting the page unless:

 The CausesValidation property is false. This property is on Button, LinkButton, and ImageButton controls. Even in
this case, client-side code is generated to tell the page submission process to bypass the validation logic. See “Preventing
Validation Or Evaluating Individual Validators”.

 Any control that submits the page has been incorrectly setup. DES’s submit controls always setup correctly. See “DES’s
Button, LinkButton, and ImageButton Controls”. Native buttons need to use the techniques described in “Using Native
Button Controls to Submit the Page”. Third party controls are described in the Using Third Party Controls guide.

 The PeterBlum.DES.Globals.Page.JavaScriptEnabled property or the
PeterBlum.DES.Globals.Page.Browser.SupportsClientSideValidators property is false.

DES provides a number of page-level properties to customize how submitting a page behaves.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 287 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Page-Level Properties used by Client-Side Validation
These properties are set on the PeterBlum.DES.Globals.Page property in Page_Load() or in the PageManager control.
They also have global default values that are set up in the Global Settings Editor, where indicated.

 ConfirmMessage, ConfirmMessageLookupID, and ConfirmMessageGroup – Allows you to show an OK/Cancel
message box when the user submits the page, regardless of if there are any errors found. If they answer OK, submit is
continued. With Cancel, it is cancelled. See the Interactive Pages User’s Guide for details.

ALERT: These properties require a license that covers the Peter’s Interactive Pages module.

If you need a carriage return within the message, use the token “{NEWLINE}” (all capital letters) where the return
should go.

The confirm message is part of a group of actions that occur during submission: validation, confirm message and custom
submit function. Use the SubmitOrder property to determine the order of these actions.

When unassigned, these properties get their default from these global settings: DefaultConfirmMessage,
DefaultConfirmMessageID, and DefaultConfirmMessageGroup. These global settings are all "" by default.

 CustomSubmitFunctionName (string) – Use this to add your own JavaScript code into the page submission process.

Before selecting this function, please consider several other available functions. CustomSubmitFunctionName may not
be called if its SubmitOrder is after page-level validation occurs and page-level validation fails. If you need a function
that is always called after page-level validation occurs, use PostPageValidationFunctionName. If you need to run code
after any validation occurs, including after field edits and page submission, use PostValidationUpdateScript.

Any submit control that has its CausesValidation property set to true will invoke your function if supplied. Your
function should take one parameter, the group name (an uppercase string), which you can use if your code depends on a
group. Your function should return a boolean value. Return true to continue submitting or false to stop submitting
the page. This property should only contain the name of the function.

Here is what your function should look like:

function functionname(group)
{
 // do your work
 if (continue)
 return true;
 else
 return false;
}

Your function should appear on the page that is generated. See “Adding Your JavaScript to the Page” for several ways to
do this.

Note: The group parameter’s value will always be uppercase, even when the user entered it with lowercase. Be sure that
you use an uppercase group name when you compare to the parameter.

The custom submit function is part of a group of actions that occur during submission: validation, confirm message and
custom submit function. Use the SubmitOrder property to determine the order of these actions.

Define the name of the function in this property. If "", no function is defined.

It defaults to "". There is no global setting for this property.

ALERT: Many users make the mistake of assigning JavaScript code to this property. This will cause JavaScript errors.
GOOD: “MyFunction”. BAD: “MyFunction();” and “alert(‘stop it’)”.

Note: JavaScript is case sensitive. Be sure the value of this property exactly matches the function definition.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 288 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 SubmitOrder (enum PeterBlum.DES.SubmitOrderType) – Determines the order of these three client-side actions when
the page is submitted:

o Validation of fields associated with submit button’s group

o Confirm message when the ConfirmMessage property is set up.

o Custom submit function when the CustomSubmitFunctionName property is set up.

Use this enumerated type to determine the order of these actions. Its values are:

o ConfirmCustomValidate – Confirm message, Custom submit function, Validate.

o ConfirmValidateCustom

o CustomConfirmValidate

o CustomValidateConfirm

o ValidateConfirmCustom

o ValidateCustomConfirm

When unassigned, its uses the value from the DefaultSubmitOrder property of the Global Settings Editor, which
defaults to ConfirmCustomValidate.

Note: When the page posts back to the server, it will once again run validation. Server-side validation is not affected by
this property. It always occurs after all client-side actions.

 PostPageValidationFunctionName (string) – Use this to execute your own JavaScript code immediately after page-
level validation occurs, whether or not the page was valid. This property should only contain the name of the function.

Your function should take these two parameters in the order shown:

o Group (an uppercase string) – The Validation Group name that was applied. When you are not using validation
groups, this will be passed "".

o IsValid (boolean) – If true, the controls are valid for the given group. If false, there is a validation error.

Your function should not return a value.

Here is what your function should look like:

function functionname(group, isValid)
{
 // do your work
}

Your function should appear on the page that is generated. See “Adding Your JavaScript to the Page” for several ways to
do this.

Note: The group parameter’s value will always be uppercase, even when the user entered it with lowercase. Be sure that
you use an uppercase group name when you compare to the parameter.

Define the name of the function in this property. If "", no function is defined.

It defaults to "". There is no global setting for this property.

ALERT: Many users make the mistake of assigning JavaScript code to this property. This will cause JavaScript errors.
GOOD: “MyFunction”. BAD: “MyFunction();” and “alert(‘stop it’)”.

Note: JavaScript is case sensitive. Be sure the value of this property exactly matches the function definition.

SEE AN EXAMPLE ON THE NEXT PAGE

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 289 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Example

This function changes the entire background color of the page when there is an error.

<script type='text/javascript'>
function ChangeBackColorToRed(group, isValid)
{
 document.body.style.backgroundColor = isValid ? "" : "red";
}
</script>

In Page_Load():

PeterBlum.DES.Globals.Page.PostPageValidationFunctionName = "ChangeBackColorToRed"

 PostValidationUpdateScript (string) – Assign any JavaScript code that you want executed after validation occurs. Its
primary intent is to allow you to run your own client-side code that relocates absolutely positioned elements after
Validator error messages or ValidationSummary have caused the page to reposition its elements. However, you can use
it for anything you want.

You can enter any JavaScript statements you want into this string. Your string will be executed by using the JavaScript
eval() function.

This function will be called even if nothing visually changed on the page.

It defaults to "".

 DefaultGroup (string) – Defines the group name used if the user hits Enter to submit the page before using any buttons
that have a group. Once a submit control is hit, its group becomes the default. The Enter key usually hits a default button,
determined by the browser. But it is unreliable, especially on Internet Explorer when there is only one <input type=text>
field. It defaults to "".

Note: The Peter’s Interactive Pages offers other techniques to map the Enter key to a particular button.

 SubmitHidesOtherValidationGroups (Boolean) – When using validation groups, errors can be displayed for multiple
groups at the same time. If the user clicks a submit button, this determines if the validation groups not on the same group
as the button will be hidden or remain in their current state.

When they are hidden, it becomes clearer to the user which errors to fix.

When true, they are hidden. When false, they remain in their current state.

It defaults to true.

This property exists only because in versions prior to 4.0.5, submit buttons kept the messages and there needs to be a
way to implement the previous behavior.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 290 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Additional Validation Topics
This section covers a variety of special cases when using the Validator controls.

Click on any of these topics to jump to them:

 Validation Best Practices

 Using the DES Validation Framework With Each ASP.NET Web Control

 Using Validators with Third Party Controls

 Analyzing the Page’s Validation configuration

 Supporting a Reset or Clear Button

 The ViewState and Preserving Properties for PostBack

 Validation and the PostBackUrl Property

 Running Validation With Client-Side Scripts

 Changing The Properties of a Validator With Client-Side Scripts

 Adding Client-Side Validation Scripts Within Your Server Side Code

 Submitting the Page: Server-Side Validation

 Submitting the Page: Client-Side Validation

 ValidationSummary Control

 CombinedErrorMessages Control

 Required Field Marker Controls

These topics are found in the General Settings Guide:

 Using these Controls with AJAX

 Establishing Default Localization for the Web Form

 Using Style Sheets

 The String Lookup System

 The Global Settings Editor

 Using Server Transfer and Using Alternative HttpHandlers

 Using a Redistribution License

 Browser Support and The TrueBrowser Class

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 291 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Validation Best Practices
Here are some things to remember to create good sites with validation.

 Client-side validation should never be assumed to run. Always have validators evaluate the same data on the server side.
Make sure the Validate() method is called on the page (PeterBlum.DES.Globals.Page) or individual Validators
within your post back event method. Then test the IsValid property on PeterBlum.DES.Globals.Page or the individual
Validators. See “Setting Up Server-Side Validation”.

 Hackers can attack a site through your data entry controls and other inputs using SQL Injection and Script Injection
(Cross-site scripting). They can access your database and modify your site when your inputs are not protected.
Validation plays a huge role in preventing this. Use the Peter’s Input Security module to add validators that protect you
against these attacks. Every input on your page should be reviewed for security holes. The Page Security Analysis report
within Peter’s Input Security can identify them. Some of your Validators on each page already provide the necessary
protection. For others, you will add the PageSecurityValidator and FieldSecurityValidator.

 Make error messages clear. Instead of keeping them short, use error formatters that popup the error message:
AlertImageErrorFormatter, HyperLinkErrorFormatter, ToolTipImageErrorFormatter, or PopupErrorFormatter. See
“ErrorFormatters: Customizing the Appearance of the Error Message”.

 Often users mix together several Validators under a single error message using the MultiConditionValidator. Instructions
to the user are clearer if individual Validators are set up for each situation. The user is then shown the exact problem to
fix. For example, “Fill this in and make it a date format” is less clear than two separate messages, “Please fill this in” and
“Incorrect date format.”

 Some Validators simply should not run on the client side. For example, a password validator, using the
CompareToValueValidator. Otherwise it will expose the password that you are comparing in the client-side. For these,
set the EnableClientScript property to false.

 Users often use an “*” character for the ErrorMessage while using a ValidationSummary control. It saves space and gets
the user’s attention. A better solution is to use the AlertImageErrorFormatter, TooltipImageErrorFormatter, or
PopupErrorFormatter with the complete error message. The user will be able to see the error message next to the field
without it using up valuable screen real estate. See “ErrorFormatters: Customizing the Appearance of the Error
Message”.

 On a tabbed or paneled interface, often there are data entry controls on hidden panels. Set up Validators either with a
validation group name for each panel or set the Enabler to the VisibleCondition that looks at the same control as you set
up in ControlIDToEvaluate.

 Some developers want to disable the submit button when there is a validation error to inspire the user to fix the
validation problem. Avoid this because:

o It prevents DES from taking actions built into the submit to remind the user they need to fix the validators. It
cannot show the ValidationSummary, an alert, set focus to fields with the error, etc.

o It does not communicate the issue that disables the button. If the issue is not absolutely obvious, a good user
interface will keep the command (button, menu item, etc) enabled and give the user a message when they use
that command to tell them of a problem. DES does this for you (ValidationSummary, alert, etc.)

If you are not using anything to communicate a validation error when the page is submitted, see “Drawing The User’s
Attention To The Error”.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 292 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Using the DES Validation Framework With Each ASP.NET Web Control
This section lists each ASP.NET webcontrol supplied by Microsoft in alphabetic order. Each control identifies how to use it
with DES. You only need to follow these directions when you add DES’s validators to the page.

Click on any of these topics to jump to them:

 AdRotator

 Calendar

 CheckBoxList

 CustomValidator

 DetailsView

 FormView

 HyperLink

 ImageMap

 ListBox

 Login

 LoginView

 Panel

 RadioButton

 RegularExpressionValidator

 SiteMapPath

 TextBox

 WebZone and WebParts

 BulletedList

 ChangePassword

 CompareValidator

 DataGrid

 DropDownList

 GridView

 Image

 Label

 Literal

 LoginName

 Menu

 PasswordRecovery

 RadioButtonList

 RequiredFieldValidator

 Substitution

 TreeView

 Wizard

 Button

 CheckBox

 CreateUserWizard

 DataList

 FileUpload

 HiddenField

 ImageButton

 LinkButton

 Localize

 LoginStatus

 MultiView

 PlaceHolder

 RangeValidator

 Repeater

 Table

 ValidationSummary

 XML

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 293 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

AdRotator
DES does not interact with this control. Use it normally.

BulletedList
When the DisplayMode property is LinkButton, validation must be set up. See “Using the BulletedList Control”.

Button
Every Button that should invoke validation needs additional code from DES’s validation system. You should either use the
Button supplied in DES (see “DES’s Button, LinkButton, and ImageButton Controls”) or assign the NativeControlExtender
to the Button. If you do not, validation will not fire on either the client- or server-side.

ALERT: Always set up Server side validation: Validating With All Other PostBack Event Handlers.

You should not use the PostBackUrl property when the button invokes validation. See “Validation and the PostBackUrl
Property” for details.

Calendar
If you require a selection in the calendar, add a CustomValidator with the following for its ServerCondition event. Here’s an
example of the ServerCondition event evaluating the value of the Calendar control called Calendar1. See “Using This
Condition” for more.

[C#]

 protected void MyCondition(PeterBlum.DES.BaseCondition sourceCondition,
 ConditionEventArgs args)
 {
 args.IsMatch = Calendar1.SelectedDate != DateTime.MinValue;
 }

[VB]

 Protected Sub MyCondition(ByVal sourceCondition As PeterBlum.DES.BaseCondition, _
 ByVal args As ConditionEventArgs)
 args.IsMatch = Calendar1.SelectedDate <> DateTime.MinValue
 End Sub

ChangePassword
The ChangePassword control requires changing all validators and buttons to DES’s controls. If there are no other data entry
controls on the page, it is not necessary to do anything. However, using DES, you can enhance this control to validate the
length, character set, and other requirements of your new passwords.

To use the ChangePassword control with DES, you must change its contents into a Template so that they appear in the
<ChangePasswordTemplate> node. A complete conversion is shown on the next page. You can copy it from this document
and paste it into your web form. If you prefer to start from scratch, here are the steps to convert.

1. Use Visual Studio 2005 to add the ChangePassword control onto your web form.

2. In design mode, use the Tasks menu on the ChangePassword control to select Convert To Template.

3. Save the document.

4. Run the Web Application Updater program on this page with its Convert native controls to their DES equivalents
option. This will change all validators and buttons for you.

On the next page you will find a completely converted page with several extensions beyond what is described above:

 RequiredTextValidators use the TooltipImageErrorFormatter instead of the “*” character.

 TextLengthValidator is available to set a minimum size. To use it, set its Enabled property to true and its Minimum
property to the desired minimum. You can add a Maximum too.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 294 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 CharacterValidator is available to limit the character set. To use it, set its Enabled property to true. Then set the
various properties, especially the OtherCharacters property to non-alphanumeric characters like underscore and period,
if allowed. If spaces are allowed, set the Space property to true.

 Several validators are combined using a CombinedErrorMessages control. This makes it easier to change the formatting
so all have a shared look. You can remove it if you like.

Here are some suggested enhancements to consider:

 Change the error message text and error formatter type.

 Set the ShowRequiredFieldMarker property to true on the RequiredTextValidators

 Add validators to confirm other patterns required for your passwords, such as a demand for at least 2 digits. If you add
these rules, also add them into the CombinedErrorMessages control.

Example

Note: Adobe Acrobat Reader permits copying text.

<asp:ChangePassword ID="ChangePassword1" runat="server">
 <ChangePasswordTemplate>
 <table border="0" cellpadding="1" cellspacing="0" style="border-collapse: collapse">
 <tr>
 <td>
 <table border="0" cellpadding="0">
 <tr>
 <td align="center" colspan="2">
 Change Your Password</td>
 </tr>
 <tr>
 <td align="right">
 <asp:Label ID="CurrentPasswordLabel" runat="server"
 AssociatedControlID="CurrentPassword">Password:</asp:Label>
 </td>
 <td>
 <asp:TextBox ID="CurrentPassword" runat="server" TextMode="Password">
 </asp:TextBox>
 <des:RequiredTextValidator ID="CurrentPasswordRequired" runat="server"
 ControlIDToEvaluate="CurrentPassword"
 ErrorMessage="{LABEL} is required." Group="ChangePassword1"
 Label-LabelControlID="CurrentPasswordLabel" Label-TrimTrailingSymbol="true">
 <ErrorFormatterContainer>
 <des:TooltipImageErrorFormatter />
 </ErrorFormatterContainer>
 </des:RequiredTextValidator>
 </td>
 </tr>
 <tr>
 <td align="right">
 <asp:Label ID="NewPasswordLabel" runat="server"
 AssociatedControlID="NewPassword">New Password:</asp:Label>
 </td>
 <td>
 <asp:TextBox ID="NewPassword" runat="server" TextMode="Password">
 </asp:TextBox>
 <des:RequiredTextValidator ID="NewPasswordRequired" runat="server"
 ControlIDToEvaluate="NewPassword"
 ErrorMessage="{LABEL} is required." Group="ChangePassword1"
 Label-LabelControlID="NewPasswordLabel" Label-TrimTrailingSymbol="true">
 <ErrorFormatterContainer>
 <des:TooltipImageErrorFormatter />
 </ErrorFormatterContainer>
 </des:RequiredTextValidator>
 </td>
 </tr>

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 295 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 <tr>
 <td align="right">
 <asp:Label ID="ConfirmNewPasswordLabel" runat="server"
 AssociatedControlID="ConfirmNewPassword">Confirm New Password:</asp:Label>
 </td>
 <td>
 <asp:TextBox ID="ConfirmNewPassword" runat="server" TextMode="Password">
 </asp:TextBox>
 <des:RequiredTextValidator ID="ConfirmNewPasswordRequired" runat="server"
 ControlIDToEvaluate="ConfirmNewPassword"
 ErrorMessage="{LABEL} is required." Group="ChangePassword1"
 Label-LabelControlID="ConfirmNewPasswordLabel" Label-TrimTrailingSymbol="true">
 <ErrorFormatterContainer>
 <des:TooltipImageErrorFormatter />
 </ErrorFormatterContainer>
 </des:RequiredTextValidator>
 </td>
 </tr>
 <tr>
 <td align="center" colspan="2">
 <des:CompareTwoFieldsValidator ID="NewPasswordCompare" runat="server"
 ControlIDToEvaluate="NewPassword"
 SecondControlIDToEvaluate="ConfirmNewPassword"
 ErrorMessage="The {LABEL2} must match the {LABEL} entry."
 Label-LabelControlID="NewPasswordLabel" Label-TrimTrailingSymbol="true"
 SecondLabel-LabelControlID="ConfirmNewPasswordLabel"
 SecondLabel-TrimTrailingSymbol="true"
 Group="ChangePassword1">
 </des:CompareTwoFieldsValidator>
 <%-- If you want a minimum text length,
 set Enabled=true and set the Minimum property --%>
 <DES:TextLengthValidator ID="PasswordLength" runat="server"
 Enabled="false"
 Minimum="0"
 ControlIDToEvaluate="NewPassword"
 ErrorMessage ="The {LABEL} requires a minimum of {MINIMUM} characters."
 Label-LabelControlID="NewPasswordLabel" Label-TrimTrailingSymbol="true"
 Group="ChangePassword1" />
 <%-- If you want to limit the characters used,
 set Enabled=true and any other properties as needed.
 Update the ErrorMessage. --%>
 <DES:CharacterValidator ID="ValidCharacters" runat="server"
 Enabled="false"
 ControlIDToEvaluate="NewPassword"
 LettersLowercase="true" LettersUppercase="true" Digits="true"
 Space="false" OtherCharacters=""
 ErrorMessage ="The {LABEL} only allows these characters:[fill in]."
 Label-LabelControlID="NewPasswordLabel" Label-TrimTrailingSymbol="true"
 Group="ChangePassword1" />
 <%-- NOTE: If you add more validators to this section,

add their IDs to the Validators node.
 This will create a single error message section. --%>
 <DES:CombinedErrorMessages ID="CombinedErrorMessages1" runat="server">
 <ErrorFormatterContainer>
 <des:TextErrorFormatter Display="Dynamic" />
 </ErrorFormatterContainer>
 <Validators>
 <DES:ValidatorControlConnection ControlID="NewPasswordCompare" />
 <DES:ValidatorControlConnection ControlID="PasswordLength" />
 <DES:ValidatorControlConnection ControlID="ValidCharacters" />
 </Validators>
 </DES:CombinedErrorMessages>
 </td>
 </tr>

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 296 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 <tr>
 <td align="center" colspan="2" style="color: red">
 <asp:Literal ID="FailureText" runat="server"

EnableViewState="False"></asp:Literal>
 </td>
 </tr>
 <tr>
 <td align="right">
 <des:Button ID="ChangePasswordPushButton" runat="server"
 CommandName="ChangePassword" Text="Change Password" Group="ChangePassword1" />
 </td>
 <td>
 <des:Button ID="CancelPushButton" runat="server"
 CausesValidation="False" CommandName="Cancel" Text="Cancel" />
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
 </ChangePasswordTemplate>
</asp:ChangePassword>

CheckBox
The CheckBox control can be validated with the CheckStateValidator.

Use CheckStateCondition in Enablers, the MultiConditionValidator, CountTrueConditionsValidator, etc.

When building a list of CheckBoxes where at least one must be checked, see the section “Requiring one mark amongst
Checkboxes on DataGrid Rows” in the Tutorials.pdf document.

When using the AutoPostBack property, you can provide validation prior to postback by using the NativeControlExtender.
Set the NativeControlExtender’s AutoPostBackValidates property to Control or ValidationGroup.

Note: The CheckBox has its own properties for validation on postback: CausesValidation and ValidationGroup. These are
not used by DES.

CheckBoxList
The CheckBoxList control can be validated with RequiredListValidator, SelectedIndexValidator, and
SelectedIndexRangesValidator.

Use RequiredListCondition and SelectedIndexCondition in Enablers, the MultiConditionValidator,
CountTrueConditionsValidator, etc are the RequiredListCondition and SelectedIndexCondition.

When using the AutoPostBack property, you can provide validation prior to postback by using the NativeControlExtender.
Set the NativeControlExtender’s AutoPostBackValidates property to Control or ValidationGroup.

Note: The CheckBoxList has its own properties for validation on postback: CausesValidation and ValidationGroup. These
are not used by DES.

CompareValidator
Replace it with a DES validator depending on the situation:

 For validating the data type format where the Operator property is DataTypeCheck, use the
DataTypeCheckValidator.

 For comparing to a value, use the CompareToValueValidator.

 For comparing two data entry controls, use the CompareTwoFieldsValidator.

To quickly convert the native validators, run the Web Application Updater program on this page with its Convert native
controls to their DES equivalents option. This will change all validators and buttons for you.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 297 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

CreateUserWizard
The CreateUserWizard control requires changing all validators and buttons to DES’s controls. If there are no other data entry
controls on the page, it is not necessary to do anything. However, using DES, you can enhance this control to validate the
length, character set, and other requirements of your new passwords.

To use the CreateUserWizard control with DES, you must change its contents into a Template so that they appear in the
<ContentTemplate> node of the <asp:CreateUserWizardStep>. A complete conversion is shown starting on the next page.
You can copy it from this document and paste it into your web form. If you prefer to start from scratch, here are the steps to
convert.

1. Use Visual Studio 2005 to add the CreateUserWizard control onto your web form.

2. In design mode, use the Tasks menu on the ChangePassword control to select the following commands:

 Customize Create User Step

 Convert to StartNavigationTemplate

 Convert to StepNavigationTemplate

 Convert to FinishNavigationTemplate

3. Save the document.

4. Run the Web Application Updater program on this page with its Convert native controls to their DES equivalents
option. This will change all validators and buttons for you.

In the example below, you will find a completely converted page with several extensions beyond what is described above:

 RequiredTextValidators use the TooltipImageErrorFormatter instead of the “*” character.

 TextLengthValidator is available to set a minimum size. To use it, set its Enabled property to true and its Minimum
property to the desired minimum. You can add a Maximum too.

 CharacterValidator is available to limit the character set. To use it, set its Enabled property to true. Then set the
various properties, especially the OtherCharacters property to non-alphanumeric characters like underscore and period,
if allowed. If spaces are allowed, set the Space property to true.

 Several validators are combined using a CombinedErrorMessages control. This makes it easier to change the formatting
so all have a shared look. You can remove it if you like.

Here are some suggested enhancements to consider:

 Change the error message text and error formatter type.

 Set the ShowRequiredFieldMarker property to true on the RequiredTextValidators

 Add validators to confirm other patterns required for your passwords, such as a demand for at least 2 digits. If you add
these rules, also add them into the CombinedErrorMessages control.

Example

Note: Adobe Acrobat Reader permits copying text.

<asp:CreateUserWizard ID="CreateUserWizard1" runat="server">
 <WizardSteps>
 <asp:CreateUserWizardStep runat="server">
 <ContentTemplate>
 <table border="0">
 <tr>
 <td align="center" colspan="2">
 Sign Up for Your New Account</td>
 </tr>

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 298 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 <tr>
 <td align="right">
 <asp:Label ID="UserNameLabel" runat="server"
 AssociatedControlID="UserName">User Name:</asp:Label>
 </td>
 <td>
 <asp:TextBox ID="UserName" runat="server"></asp:TextBox>
 <des:RequiredTextValidator ID="UserNameRequired" runat="server"
 ControlIDToEvaluate="UserName"
 ErrorMessage="{LABEL} is required." Group="CreateUserWizard1"
 Label-LabelControlID="UserNameLabel" Label-TrimTrailingSymbol="true">
 <ErrorFormatterContainer>
 <des:TooltipImageErrorFormatter />
 </ErrorFormatterContainer>
 </des:RequiredTextValidator>
 </td>
 </tr>
 <tr>
 <td align="right">
 <asp:Label ID="PasswordLabel" runat="server"
 AssociatedControlID="Password">Password:</asp:Label>
 </td>
 <td>
 <asp:TextBox ID="Password" runat="server" TextMode="Password"></asp:TextBox>
 <des:RequiredTextValidator ID="PasswordRequired" runat="server"
 ControlIDToEvaluate="Password"
 ErrorMessage="{LABEL} is required." Group="CreateUserWizard1"
 Label-LabelControlID="PasswordLabel" Label-TrimTrailingSymbol="true">
 <ErrorFormatterContainer>
 <des:TooltipImageErrorFormatter />
 </ErrorFormatterContainer>
 </des:RequiredTextValidator>
 </td>
 </tr>
 <tr>
 <td align="right">
 <asp:Label ID="ConfirmPasswordLabel" runat="server"
 AssociatedControlID="ConfirmPassword">Confirm Password:</asp:Label>
 </td>
 <td>
 <asp:TextBox ID="ConfirmPassword" runat="server" TextMode="Password"></asp:TextBox>
 <des:RequiredTextValidator ID="ConfirmPasswordRequired" runat="server"
 ControlIDToEvaluate="ConfirmPassword"
 ErrorMessage="{LABEL} is required." Group="CreateUserWizard1"
 Label-LabelControlID="ConfirmPasswordLabel" Label-TrimTrailingSymbol="true">
 <ErrorFormatterContainer>
 <des:TooltipImageErrorFormatter />
 </ErrorFormatterContainer>
 </des:RequiredTextValidator>
 </td>
 </tr>

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 299 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 <tr>
 <td align="right">
 <asp:Label ID="EmailLabel" runat="server"

AssociatedControlID="Email">E-mail:</asp:Label>
 </td>

 <td>
 <asp:TextBox ID="Email" runat="server"></asp:TextBox>
 <des:RequiredTextValidator ID="EmailRequired" runat="server"
 ControlIDToEvaluate="Email"
 ErrorMessage="{LABEL} is required." Group="CreateUserWizard1"
 Label-LabelControlID="EmailLabel" Label-TrimTrailingSymbol="true">
 <ErrorFormatterContainer>
 <des:TooltipImageErrorFormatter Display="Dynamic" />
 </ErrorFormatterContainer>
 </des:RequiredTextValidator>
 <DES:EmailAddressValidator ID="EmailValidator1" runat="server"
 ControlIDToEvaluate="Email"
 ErrorMessage="{LABEL} is not a valid email address." Group="CreateUserWizard1"
 Label-LabelControlID="EmailLabel" Label-TrimTrailingSymbol="true">
 <ErrorFormatterContainer>
 <des:TooltipImageErrorFormatter Display="Dynamic" />
 </ErrorFormatterContainer>
 </des:EmailAddressValidator>
 </td>
 </tr>
 <tr>
 <td align="right">
 <asp:Label ID="QuestionLabel" runat="server"
 AssociatedControlID="Question">Security Question:</asp:Label>
 </td>
 <td>
 <asp:TextBox ID="Question" runat="server"></asp:TextBox>
 <des:RequiredTextValidator ID="QuestionRequired" runat="server"
 ControlIDToEvaluate="Question"
 ErrorMessage="{LABEL} is required." Group="CreateUserWizard1"
 Label-LabelControlID="QuestionLabel" Label-TrimTrailingSymbol="true">
 <ErrorFormatterContainer>
 <des:TooltipImageErrorFormatter Display="Dynamic" />
 </ErrorFormatterContainer>
 </des:RequiredTextValidator>
 </td>
 </tr>
 <tr>
 <td align="right">
 <asp:Label ID="AnswerLabel" runat="server"
 AssociatedControlID="Answer">Security Answer:</asp:Label>
 </td>
 <td>
 <asp:TextBox ID="Answer" runat="server"></asp:TextBox>
 <des:RequiredTextValidator ID="AnswerRequired" runat="server"
 ControlIDToEvaluate="Answer"
 ErrorMessage="{LABEL} is required." Group="CreateUserWizard1"
 Label-LabelControlID="AnswerLabel" Label-TrimTrailingSymbol="true">
 <ErrorFormatterContainer>
 <des:TooltipImageErrorFormatter Display="Dynamic" />
 </ErrorFormatterContainer>
 </des:RequiredTextValidator>
 </td>
 </tr>

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 300 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 <tr>
 <td align="center" colspan="2">
 <des:CompareTwoFieldsValidator ID="PasswordCompare" runat="server"
 ControlIDToEvaluate="Password"
 SecondControlIDToEvaluate="ConfirmPassword"
 ErrorMessage="The {LABEL2} must match the {LABEL} entry."
 Label-LabelControlID="PasswordLabel" Label-TrimTrailingSymbol="true"
 SecondLabel-LabelControlID="ConfirmPasswordLabel"
 SecondLabel-TrimTrailingSymbol="true"
 Group="CreateUserWizard1">
 </des:CompareTwoFieldsValidator>
 <%-- If you want a minimum text length,
 set Enabled=true and set the Minimum property --%>
 <DES:TextLengthValidator ID="PasswordLength" runat="server"
 Enabled="false"
 Minimum="0"
 ControlIDToEvaluate="Password"
 ErrorMessage ="The {LABEL} requires a minimum of {MINIMUM} characters."
 Label-LabelControlID="PasswordLabel" Label-TrimTrailingSymbol="true"
 Group="ChangePassword1" />
 <%-- If you want to limit the characters used,
 set Enabled=true and any other properties as needed.
 Update the ErrorMessage. --%>
 <DES:CharacterValidator ID="ValidCharacters" runat="server"
 Enabled="true"
 ControlIDToEvaluate="Password"
 LettersLowercase="true" LettersUppercase="true" Digits="true"
 Space="false" OtherCharacters=""
 ErrorMessage ="The {LABEL} only allows these characters:[fill in]."
 Label-LabelControlID="PasswordLabel" Label-TrimTrailingSymbol="true"
 Group="ChangePassword1" />
 <%-- NOTE: If you add more validators to this section,

 add their IDs to the Validators node.
 This will create a single error message section. --%>
 <DES:CombinedErrorMessages ID="CombinedErrorMessages1" runat="server">
 <ErrorFormatterContainer>
 <des:TextErrorFormatter Display="Dynamic" />
 </ErrorFormatterContainer>
 <Validators>
 <DES:ValidatorControlConnection ControlID="PasswordCompare" />
 <DES:ValidatorControlConnection ControlID="PasswordLength" />
 <DES:ValidatorControlConnection ControlID="ValidCharacters" />
 </Validators>
 </DES:CombinedErrorMessages>
 </td>
 </tr>
 <tr>
 <td align="center" colspan="2" style="color: red">
 <asp:Literal ID="ErrorMessage" runat="server" EnableViewState="False"></asp:Literal>
 </td>
 </tr>
 </table>
 </ContentTemplate>
 <CustomNavigationTemplate>
 <table border="0" cellspacing="5" style="width: 100%; height: 100%;">
 <tr align="right">
 <td align="right" colspan="0">
 <des:Button ID="StepNextButton" runat="server"
 CommandName="MoveNext" Text="Create User"
 Group="CreateUserWizard1" />
 </td>
 </tr>
 </table>
 </CustomNavigationTemplate>
 </asp:CreateUserWizardStep>
 <asp:CompleteWizardStep ID="CompleteWizardStep1" runat="server">
 </asp:CompleteWizardStep>
 </WizardSteps>

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 301 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 <StartNavigationTemplate>
 <des:Button ID="StartNextButton" runat="server"
 CommandName="MoveNext" Text="Next" Group="CreateUserWizard1" />
 </StartNavigationTemplate>
 <StepNavigationTemplate>
 <des:Button ID="StepPreviousButton" runat="server"
 CausesValidation="False" CommandName="MovePrevious" Text="Previous" />
 <des:Button ID="StepNextButton" runat="server"
 CommandName="MoveNext" Text="Next" Group="CreateUserWizard1" />
 </StepNavigationTemplate>
 <FinishNavigationTemplate>
 <des:Button ID="FinishPreviousButton" runat="server"
 CausesValidation="False" CommandName="MovePrevious" Text="Previous" />
 <des:Button ID="FinishButton" runat="server"
 CommandName="MoveComplete" Text="Finish" Group="CreateUserWizard1" />
 </FinishNavigationTemplate>
</asp:CreateUserWizard>

CustomValidator
Many situations where you used your own custom code can now be handled by DES’s existing validators. If the logic only
involves the controls on the page and does not have to query your business objects, its likely that DES’s validators will work.
Choose the MultiConditionValidator when you have a boolean expression in your logic.

If you cannot use the other validators, replace it with DES’s CustomValidator.

To quickly convert the native validators, run the Web Application Updater program on this page with its Convert native
controls to their DES equivalents option. This will change all validators and buttons for you.

DataGrid
When you want to validate data entry controls in a DataGrid, you must use a TemplateColumn where you define the data
entry controls and their validators. You will have to abandon the convenience of the BoundColumn and write your own data
assignment code.

When there are any DES validators on the page, whether in the DataGrid or elsewhere, always replace the ButtonColumn and
EditCommandColumn controls with DES’s equivalents. See “DES’s Submit Controls For The DataGrid”.

If you are programmatically assigning properties on any of DES’s controls, do so in the ItemCreated event, not the
ItemDataBound event. (ItemCreated is called each time the page is requested and happens before the attempt to validate.
ItemDataBound is only called when you invoke the DataBind() method.)

When using AJAX, if any of the controls are not shown until a callback occurs because they are not on the initial view, you
must be sure to set up AJAX properly. For most types of controls, you will use the
PeterBlum.DES.AJAXManager.PreregisterForAJAX() method or the PreLoadForAJAX property found on
the PageManager control. For controls in the Peter’s Date and Time module, you will also need to create a dummy control
that is preregistered.

Details for all of these issues are in the steps for setting up AJAX in the General Features Guide.

DataList
When there are any DES validators on the page, whether in the DataList or elsewhere, always replace the submit controls
with DES’s equivalents. See “DES’s Button, LinkButton, and ImageButton Controls”.

If you are programmatically assigning properties on any of DES’s controls, do so in the ItemCreated event, not the
ItemDataBound event. (ItemCreated is called each time the page is requested and happens before the attempt to validate.
ItemDataBound is only called when you invoke the DataBind() method.)

DetailsView
When you want to validate data entry controls in a DetailsView , you must use a TemplateField where you define the data
entry controls and their validators. You will have to abandon the convenience of the BoundField and write your own data
assignment code.

If you are programmatically assigning properties on any of DES’s controls, do so in the ItemCreated event.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.datagrid.itemcreated.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.datalist.itemcreated.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.detailsview.itemcreated.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 302 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

When there are any DES validators on the page, whether in the DetailsView or elsewhere, always replace the ButtonField and
CommandField controls with DES’s equivalents. See “DES’s Submit Controls For The GridView and DetailsView”.

DropDownList
The DropDownList control can be validated with RequiredListValidator, SelectedIndexValidator, and
SelectedIndexRangesValidator. They all validate the selected index. You can also evaluate the textual value selected by the
DropDownList using most of the validators that support text including CompareToValueValidator, RangeValidator, and
RegexValidator.

The Conditions that you can use in Enablers, the MultiConditionValidator, CountTrueConditionsValidator, etc are the
RequiredListCondition and SelectedIndexCondition.

When using the AutoPostBack property, you can provide validation prior to postback by using the NativeControlExtender.
Set the NativeControlExtender’s AutoPostBackValidates property to Control or ValidationGroup.

Note: The DropDownList has its own properties for validation on postback: CausesValidation and ValidationGroup. These
are not used by DES.

Overcoming a bug in Google Chrome 1

When a DropDownList has AutoPostBack set to true and you assign a DES validator to that DropDownList, Google
Chrome v1 will generate a JavaScript error. Use the NativeControlExtender to avoid this. Add it to any DropDownList whose
AutoPostBack property is set to true and has validators.

Internally the NativeControlExtender swaps the original AutoPostBack scripts with alternatives that work with all browsers.

FileUpload
The FileUpload control creates the HTML tag <input type='file'>. Users often expect that they can add client-side
validation to prevent uploading files of the wrong type. Because the browser defines the functionality of the
<input type='file'> tag, this is not available. In fact, it’s a little tricky even to require text in its textbox. This section
will give you some suggested solutions.

Checking the FilePath

If the field is required, add a RequiredTextValidator to this control.

If you want to confirm a file extension, use the CompareToStringsValidator with its MatchTextRule property set to
EndsWith and the Items collection identifying the valid file extensions. This example checks for the following file
extensions: txt, html, and htm.

<DES:CompareToStringsValidator ID="CompareToStringsValidator1" runat="server"
ControlIDToEvaluate="FileUpload1" CaseInsensitive="true"
MatchTextRule="EndsWith"
ErrorMessage="Please select only files of type 'txt', 'html' or 'htm'.">

 <Items>
<DES:CompareToStringsItem Value="txt" />
<DES:CompareToStringsItem Value="html" />
<DES:CompareToStringsItem Value="htm" />

 </Items>
</DES:CompareToStringsValidator>

You cannot validate that the path points to a real file on the user’s hard disk. The browser is designed to provide the user with
security that prevents you from evaluating the contents of their hard disk.

Server Side Validation

There are several actions you should take on the server side to confirm that you received a file and it meets your
requirements. They are:

 Check the file type from the FileUpload.PostedFile.ContentType property

 Check the file length in case the file is too small or large from the FileUpload.PostedFile.ContentLength property.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 303 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 Check the bytes of the file to make sure they match patterns expected for the file type. This way, users cannot pass you
an unwanted file by changing its file extension to match your valid file extensions. You have to acquire the code
necessary to evaluate any file format.

Use an IgnoreConditionValidator to report any errors you find with the file.

Example

Here is the HTML for this form. It includes three validators: RequiredTextValidator, CompareToStringsValidator, and
IgnoreConditionValidator.

<asp:FileUpload ID="FileUpload1" runat="server" />
<DES:RequiredTextValidator ID="RequiredTextValidator1" runat="server"

ControlIDToEvaluate="FileUpload1" ErrorMessage="Required">
 <ErrorFormatterContainer>
 <DES:TextErrorFormatter Display="Dynamic" />
 </ErrorFormatterContainer>
</DES:RequiredTextValidator>
<DES:CompareToStringsValidator ID="CompareToStringsValidator1" runat="server"

ControlIDToEvaluate="FileUpload1" CaseInsensitive="true"
MatchTextRule="EndsWith"
ErrorMessage="Please select only files of type 'txt'.">

 <Items>
 <DES:CompareToStringsItem Value="txt" />
 </Items>
 <ErrorFormatterContainer>
 <DES:TextErrorFormatter Display="Dynamic" />
 </ErrorFormatterContainer>
</DES:CompareToStringsValidator>
<DES:IgnoreConditionValidator ID="IgnoreConditionValidator1" runat="server">
 <ErrorFormatterContainer>
 <DES:TextErrorFormatter Display="Dynamic" />
 </ErrorFormatterContainer>
</DES:IgnoreConditionValidator>

In the Click post back event of your submit control, add this code:

[C#]

if (FileUpload1.HasFile)
{
 // test the file content type. This example uses a text file.
 if (FileUpload1.PostedFile.ContentType != "text/plain")
 {
 IgnoreConditionValidator1.IsValid = false;
 IgnoreConditionValidator1.ErrorMessage = "Please provide a text file.";
 return;
 }
 // if desired, test the file length. This example limits it to 10K
 if (FileUpload1.PostedFile.ContentLength > 10 * 1024)
 {
 IgnoreConditionValidator1.IsValid = false;
 IgnoreConditionValidator1.ErrorMessage =

"The file is too large. Select files that are smaller than 10K.";
 return;
 }
 // perform additional testing on the file bytes to be sure
 // the user isn't trying to sneak an illegal file under a valid content type
 // The developer should acquire the logic that evaluates the file bytes.
/* if (!TestFileBytes())
 {
 IgnoreConditionValidator1.IsValid = false;
 IgnoreConditionValidator1.ErrorMessage = "The file is not a text file.";
 return;
 } */
}
else
{
 IgnoreConditionValidator1.IsValid = false;
 IgnoreConditionValidator1.ErrorMessage = "Please assign a file";

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 304 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

}
if (PeterBlum.DES.Globals.Page.IsValid)
{
 // save the file
}

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 305 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

[VB]

If FileUpload1.HasFile Then
 ' test the file content type. This example uses a text file.
 If FileUpload1.PostedFile.ContentType <> "text/plain" Then
 IgnoreConditionValidator1.IsValid = False
 IgnoreConditionValidator1.ErrorMessage = "Please provide a text file."
 Return
 End If

 ' if desired, test the file length. This example limits it to 10K
 If FileUpload1.PostedFile.ContentLength > 10 * 1024 Then
 IgnoreConditionValidator1.IsValid = False
 IgnoreConditionValidator1.ErrorMessage = _

"The file is too large. Select files that are smaller than 10K."
 Return
 End If

 ' perform additional testing on the file bytes to be sure
 ' the user isn't trying to sneak an illegal file under a valid content type
 ' The developer should acquire the logic that evaluates the file bytes.

' If Not TestFileBytes() Then
' IgnoreConditionValidator1.IsValid = False
' IgnoreConditionValidator1.ErrorMessage = "The file is not a text file."
' Return
' End If
 */
Else
 IgnoreConditionValidator1.IsValid = False
 IgnoreConditionValidator1.ErrorMessage = "Please assign a file"
End If
If PeterBlum.DES.Globals.Page.IsValid Then
 ' save the file
End If

FormView
The FormView uses templates to define the entire layout of the control. You should add DES validators and submit controls
instead of the originals.

When you define a button that does not require validation, like “Cancel”, set its CausesValidation property to false.

If you are programmatically assigning properties on any of DES’s controls, do so in the ItemCreated event.

When using AJAX, if any of the controls are not shown until a callback occurs because they are not on the initial view, you
must be sure to set up AJAX properly. For most types of controls, you will use the
PeterBlum.DES.AJAXManager.PreregisterForAJAX() method or the PreLoadForAJAX property found on
the PageManager control. For controls in the Peter’s Date and Time module, you will also need to create a dummy control
that is preregistered.

Details for all of these issues are in the steps for setting up AJAX in the General Features Guide.

GridView
When you want to validate data entry controls in a GridView , you must use a TemplateField where you define the data entry
controls and their validators. You will have to abandon the convenience of the BoundField and write your own data
assignment code.

When there are any DES validators on the page, whether in the GridView or elsewhere, always replace the ButtonField and
CommandField controls with DES’s equivalents. See “DES’s Submit Controls For The GridView and DetailsView”.

If you are programmatically assigning properties on any of DES’s controls, do so in the RowCreated event, not the
RowDataBound event. (RowCreated is called each time the page is requested and happens before the attempt to validate.
RowDataBound is only called when you invoke the DataBind() method.)

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.formview.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.formview.itemcreated.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.gridview.rowcreated.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 306 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

When using AJAX, if any of the controls are not shown until a callback occurs because they are not on the initial view, you
must be sure to set up AJAX properly. For most types of controls, you will use the
PeterBlum.DES.AJAXManager.PreregisterForAJAX() method or the PreLoadForAJAX property found on
the PageManager control. For controls in the Peter’s Date and Time module, you will also need to create a dummy control
that is preregistered.

Details for all of these issues are in the steps for setting up AJAX in the General Features Guide.

HiddenField
Many of DES’s validators can evaluate the HiddenField. They are triggered only when the form is submitted since the HTML
tag <input type='hidden'> does not fire an event when its contents are changed.

HyperLink
DES does not interact with this control. Use it normally.

If you want a HyperLink to validate before moving to another page, use a DES LinkButton instead. It will post back where
server side validation will be applied (which you should demand in case the browser doesn’t support client-side validation.)
To go to another page from the server side, call Response.Redirect("URL").

Image
DES does not interact with this control. Use it normally.

ImageButton
Every ImageButton that should invoke validation needs additional code from DES’s validation system. You should either use
the ImageButton supplied in DES (see “DES’s Button, LinkButton, and ImageButton Controls”) or assign the
NativeControlExtender to the ImageButton. If you do not, validation will not fire on either the client- or server-side.

ALERT: Always set up Server side validation: Validating With All Other PostBack Event Handlers.

You should not use the PostBackUrl property when the button invokes validation. See “Validation and the PostBackUrl
Property” for details.

ImageMap
DES does not interact with this control. Use it normally.

Label
DES does not interact with this control. Use it normally.

DES offers an alternative control called LocalizableLabel, available if you are using the String Lookup System for
localization. See the General Features Guide.

LinkButton
Every LinkButton that should invoke validation needs additional code from DES’s validation system. You should either use
the LinkButton supplied in DES (see “DES’s Button, LinkButton, and ImageButton Controls”) or assign the
NativeControlExtender to the LinkButton. If you do not, validation will not fire on either the client- or server-side.

ALERT: Always set up Server side validation: Validating With All Other PostBack Event Handlers.

You should not use the PostBackUrl property when the button invokes validation. See “Validation and the PostBackUrl
Property” for details.

ListBox
The ListBox control can be validated with RequiredListValidator, SelectedIndexValidator, and
SelectedIndexRangesValidator. They all validate the selected index. You can also evaluate the textual value selected by the
ListBox using most of the validators that support text including CompareToValueValidator, RangeValidator, and
RegexValidator. You can also validate the number of items in the list with the ListSizeValidator.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 307 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

The Conditions that you can use in Enablers, the MultiConditionValidator, CountTrueConditionsValidator, etc are the
RequiredListCondition, SelectedIndexCondition, and SelectedIndexRangesCondition.

When using the AutoPostBack property, you can provide validation prior to postback by using the NativeControlExtender.
Set the NativeControlExtender’s AutoPostBackValidates property to Control or ValidationGroup.

Note: The ListBox has its own properties for validation on postback: CausesValidation and ValidationGroup. These are not
used by DES.

Literal
DES does not interact with this control. Use it normally.

Localize
DES does not interact with this control. Use it normally.

Login
The Login control requires changing all validators and buttons to DES’s controls. If there are no other data entry controls on
the page, it is not necessary to do anything.

To use the Login control with DES, you must change its contents into a Template so that they appear in the
<LayoutTemplate> node. A complete conversion is shown on the next page. You can copy it from this document and
paste it into your web form. If you prefer to start from scratch, here are the steps to convert.

1. Use Visual Studio to add the Login control onto your web form.

2. In design mode, use the Tasks menu on the Login control to select Convert To Template.

3. Save the document.

4. Run the Web Application Updater program on this page with its Convert native controls to their DES equivalents
option. This will change all validators and buttons for you.

WARNING: When using Forms Authentication, users have found that their login page’s Page_Load() method is invoked
several times. DES needs files from the [webapplication]\DES folder to support your login page. The problem occurs
when those files require authentication to access them. The DES folder must be setup with anonymous access for your login
page to operate. For details, see the topic “Images and style sheets do not load when the site uses Forms Authentication” in
the Troubleshooting section of the General Features Guide.

Below is a completely converted page with several extensions beyond what is described above:

 RequiredTextValidators use the TooltipImageErrorFormatter instead of the “*” character.

Here are some suggested enhancements to consider:

 Always test the PeterBlum.DES.Globals.Page.IsValid property is true inside your postback event handler method.
For the Login control, use its LoggingIn event. If IsValid is false, set e.Cancel to true.

 Change the error message text and error formatter type.

 Set the ShowRequiredFieldMarker property to true on the RequiredTextValidators.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.login.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 308 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Example

Note: Adobe Acrobat Reader permits copying text.

<asp:Login ID="Login1" runat="server">
 <LayoutTemplate>
 <table border="0" cellpadding="1" cellspacing="0" style="border-collapse: collapse">
 <tr>
 <td>
 <table border="0" cellpadding="0">
 <tr>
 <td align="center" colspan="2">
 Log In</td>
 </tr>
 <tr>
 <td align="right">
 <asp:Label ID="UserNameLabel" runat="server"

AssociatedControlID="UserName">User Name:</asp:Label>
 </td>

 <td>
 <asp:TextBox ID="UserName" runat="server"></asp:TextBox>
 <des:RequiredTextValidator ID="UserNameRequired" runat="server"
 ControlIDToEvaluate="UserName"
 ErrorMessage="{LABEL} is required." Group="Login1"
 Label-LabelControlID="UserNameLabel" Label-TrimTrailingSymbol="true">
 <ErrorFormatterContainer>
 <des:TooltipImageErrorFormatter />
 </ErrorFormatterContainer>
 </des:RequiredTextValidator>
 </td>
 </tr>
 <tr>
 <td align="right">
 <asp:Label ID="PasswordLabel" runat="server"

AssociatedControlID="Password">Password:</asp:Label>
 </td>

 <td>
 <asp:TextBox ID="Password" runat="server" TextMode="Password"></asp:TextBox>
 <des:RequiredTextValidator ID="PasswordRequired" runat="server"
 ControlIDToEvaluate="Password"
 ErrorMessage="{LABEL} is required." Group="Login1"
 Label-LabelControlID="PasswordLabel" Label-TrimTrailingSymbol="true">
 <ErrorFormatterContainer>
 <des:TooltipImageErrorFormatter />
 </ErrorFormatterContainer>
 </des:RequiredTextValidator>
 </td>
 </tr>
 <tr>
 <td colspan="2">
 <asp:CheckBox ID="RememberMe" runat="server" Text="Remember me next time." />
 </td>
 </tr>
 <tr>
 <td align="center" colspan="2" style="color: red">
 <asp:Literal ID="FailureText" runat="server" EnableViewState="False">

 </asp:Literal>
 </td>
 </tr>
 <tr>
 <td align="right" colspan="2">
 <des:Button ID="LoginButton" runat="server"
 CommandName="Login" Text="Log In" Group="Login1" />
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
 </LayoutTemplate>
</asp:Login>

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 309 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

LoginName
DES does not interact with this control. Use it normally.

LoginStatus
DES does not interact with this control. Use it normally.

LoginView
DES does not interact with this control. Use it normally.

Menu
See “Using the Menu Control to Validate the Page”.

MultiView
Use the DES validators and submit controls instead of the originals.

When using AJAX, if any of the controls are not shown until a callback occurs because they are not on the initial view, you
must be sure to set up AJAX properly. For most types of controls, you will use the
PeterBlum.DES.AJAXManager.PreregisterForAJAX() method or the PreLoadForAJAX property found on
the PageManager control. For controls in the Peter’s Date and Time module, you will also need to create a dummy control
that is preregistered.

Details for all of these issues are in the steps for setting up AJAX in the General Features Guide.

Panel
DES does not interact with this control. Use it normally.

In ASP.NET 2+, the Panel has a property DefaultButton. This is very similar to DES’s TextBox.EnterSubmitsControlID
property and the “Direct Keystrokes to Click Buttons” features described in the Interactive Pages User’s Guide. You
can use either system to achieve the desired effect. Also, the Panel has the method Focus() which sets focus to a control as
the page is loaded. It is very similar to the property PeterBlum.DES.Globals.Page.InitialFocusControl. You can use either
system but not both at the same time.

PasswordRecovery
The PasswordRecovery control requires changing all validators and buttons to DES’s controls. If there are no other data entry
controls on the page, it is not necessary to do anything.

To use the Login control with DES, you must change its contents into a Template so that they appear in the
<UserNameTemplate> node. A complete conversion is shown below. You can copy it from this document and paste it
into your web form. If you prefer to start from scratch, here are the steps to convert.

1. Use Visual Studio to add the Login control onto your web form.

2. In design mode, use the Tasks menu on the Login control to select Convert To Template.

3. Save the document.

4. Run the Web Application Updater program on this page with its Convert native controls to their DES equivalents
option. This will change all validators and buttons for you.

On the next page you will find a completely converted page with several extensions beyond what is described above:

 RequiredTextValidators use the TooltipImageErrorFormatter instead of the “*” character.

Here are some suggested enhancements to consider:

 Change the error message text and error formatter type.

 Set the ShowRequiredFieldMarker property to true on the RequiredTextValidator.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 310 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Example

Note: Adobe Acrobat Reader permits copying text.

<asp:PasswordRecovery ID="PasswordRecovery1" runat="server">
 <UserNameTemplate>
 <table border="0" cellpadding="1" cellspacing="0" style="border-collapse: collapse">
 <tr>
 <td>
 <table border="0" cellpadding="0">
 <tr>
 <td align="center" colspan="2">
 Forgot Your Password?</td>
 </tr>
 <tr>
 <td align="center" colspan="2">
 Enter your User Name to receive your password.</td>
 </tr>
 <tr>
 <td align="right">
 <asp:Label ID="UserNameLabel" runat="server"
 AssociatedControlID="UserName">User Name:</asp:Label>
 </td>
 <td>
 <asp:TextBox ID="UserName" runat="server"></asp:TextBox>
 <des:RequiredTextValidator ID="UserNameRequired" runat="server"
 ControlIDToEvaluate="UserName"
 ErrorMessage="{LABEL} is required." Group="PasswordRecovery1"
 Label-LabelControlID="UserNameLabel" Label-TrimTrailingSymbol="true">
 <ErrorFormatterContainer>
 <des:TooltipImageErrorFormatter />
 </ErrorFormatterContainer>
 </des:RequiredTextValidator>
 </td>
 </tr>
 <tr>
 <td align="center" colspan="2" style="color: red">
 <asp:Literal ID="FailureText" runat="server" EnableViewState="False">

 </asp:Literal>
 </td>
 </tr>
 <tr>
 <td align="right" colspan="2">
 <des:Button ID="SubmitButton" runat="server"
 CommandName="Submit" Text="Submit" Group="PasswordRecovery1" />
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
 </UserNameTemplate>
</asp:PasswordRecovery>

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 311 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

PlaceHolder
DES does not interact with this control. Use it normally.

RadioButton
The RadioButton control can be validated with the CheckStateValidator.

Use the CheckStateCondition in Enablers, the MultiConditionValidator, CountTrueConditionsValidator.

When building a list of RadioButtons where at least one must be checked, see the section “Requiring one mark amongst
Checkboxes on DataGrid Rows” in the Tutorials.pdf document. It works for both checkboxes and radiobuttons.

When using the AutoPostBack property of the RadioButton, see “Using Validation with AutoPostBack”.

RadioButtonList
The RadioButtonList control can be validated with RequiredListValidator, SelectedIndexValidator, and
SelectedIndexRangesValidator. They all validate the selected index. You can also evaluate the textual value selected by the
RadioButtonList using most of the validators that support text including CompareToValueValidator, RangeValidator, and
RegexValidator.

Use the RequiredListCondition and SelectedIndexCondition in Enablers, the MultiConditionValidator,
CountTrueConditionsValidator, etc.

When using the AutoPostBack property, you can provide validation prior to postback by using the NativeControlExtender.
Set the NativeControlExtender’s AutoPostBackValidates property to Control or ValidationGroup.

Note: The RadioButtonList has its own properties for validation on postback: CausesValidation and ValidationGroup. These
are not used by DES.

RangeValidator
Replace it with DES’s RangeValidator.

To quickly convert the native validators, run the Web Application Updater program on this page with its Convert native
controls to their DES equivalents option. This will change all validators and buttons for you.

RegularExpressionValidator
Replace it with DES’s RegexValidator.

To quickly convert the native validators, run the Web Application Updater program on this page with its Convert native
controls to their DES equivalents option. This will change all validators and buttons for you.

RequiredFieldValidator
Replace it with DES’s RequiredTextValidator. If you are validating the ListBox, DropDrownList, CheckBoxList, or
RadioButtonList, also consider the RequiredListValidator.

To quickly convert the native validators, run the Web Application Updater program on this page with its Convert native
controls to their DES equivalents option. This will change all validators and buttons for you.

Repeater
Use the DES validators and submit controls instead of the originals.

If you are programmatically assigning properties on any of DES’s controls, do so in the ItemCreated event, not the
ItemDataBound event. (ItemCreated is called each time the page is requested and happens before the attempt to validate.
ItemDataBound is only called when you invoke the DataBind() method.)

When using AJAX, if any of the controls are not shown until a callback occurs because they are not on the initial view, you
must be sure to set up AJAX properly. For most types of controls, you will use the
PeterBlum.DES.AJAXManager.PreregisterForAJAX() method or the PreLoadForAJAX property found on
the PageManager control. For controls in the Peter’s Date and Time module, you will also need to create a dummy control
that is preregistered.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.repeater.itemcreated.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 312 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Details for all of these issues are in the steps for setting up AJAX in the General Features Guide.

SiteMapPath
DES does not interact with this control. Use it normally.

Substitution
DES does not interact with this control. Use it normally.

Table
DES does not interact with this control. Use it normally.

TextBox
Most of DES’s validators are designed to use this class. In addition, DES supplies several expanded versions of this control in
its Peter’s TextBoxes and Peter’s Date and Time modules.

When using the AutoPostBack property, you can provide validation prior to postback by using the NativeControlExtender.
Set the NativeControlExtender’s AutoPostBackValidates property to Control or ValidationGroup.

Note: The TextBox has its own properties for validation on postback: CausesValidation and ValidationGroup. These are not
used by DES.

TreeView
The TreeView optionally provides checkboxes. If you want to evaluate that a certain number have been marked, use a
CustomValidator with this server-side evaluation method assigned to its ServerCondition property. It evaluates the number of
checkboxes in the CheckedNodes.Count property. In this example, it demands between 1 and 5 checkboxes.

[C#]

protected void TreeViewCountSelections(PeterBlum.DES.BaseCondition pCondition,
PeterBlum.DES.ConditionEventArgs pArgs)

{
 // must have 1 - 5 checkboxes marked
 pArgs.IsMatch =

TreeView1.CheckedNodes.Count > 0 &&
TreeView1.CheckedNodes.Count < 5;

}

In Page_Load(), set the ServerCondition like this:

CustomValidator1.ServerCondition =
new PeterBlum.DES.ServerConditionEventHandler(TreeViewCountSelections);

[VB]

Protected Sub TreeViewCountSelections(_
ByVal pCondition As PeterBlum.DES.BaseCondition, _
ByVal pArgs As PeterBlum.DES.ConditionEventArgs)

 ' must have 1 - 5 checkboxes marked
 pArgs.IsMatch = _

TreeView1.CheckedNodes.Count > 0 And _
TreeView1.CheckedNodes.Count < 5

End Sub

In Page_Load(), set the ServerCondition like this:

CustomValidator1.ServerCondition = _
New PeterBlum.DES.ServerConditionEventHandler(_

AddressOf TreeViewCountSelections);

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 313 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

ValidationSummary
Replace with the DES ValidationSummary.

To quickly convert the native ValidationSummary, run the Web Application Updater program on this page with its
Convert native controls to their DES equivalents option. This will change all validators, the ValidationSummary, and
buttons for you.

WebZone and WebParts
DES does not interact with this control. Use it normally.

Wizard
As you define data entry controls in the Wizard pages, use DES’s validators. If you add a submit control into the page, it
should be a DES submit control.

The navigation controls – Next, Previous, and Finish – default to the native buttons. They need to be converted to DES
buttons. Convert the three navigation control sections – StartNavigationTemplate, StepNavigationTemplate, and
FinishNavigationTemplate – to their respective templates and add the DES buttons. Here is a wizard with the templates for
buttons.

<asp:Wizard ID="Wizard1" runat="server" ActiveStepIndex="2"
 OnNextButtonClick="Wizard1_NextButtonClick"
 OnPreviousButtonClick="Wizard1_PreviousButtonClick">
 <WizardSteps>
 <asp:WizardStep runat="server" Title="Step 1">
 This is step 1</asp:WizardStep>
 <asp:WizardStep runat="server" Title="Step 2">
 This is step 2

 </asp:WizardStep>
 <asp:TemplatedWizardStep runat="server" Title="Blah">
 <ContentTemplate>
 This is the an example using a template
 </ContentTemplate>
 </asp:TemplatedWizardStep>
 </WizardSteps>
 <StartNavigationTemplate>
 <des:Button ID="StartNextButton" runat="server"

 CommandName="MoveNext" Text="Next" />
 </StartNavigationTemplate>
 <StepNavigationTemplate>
 <des:Button ID="StepPreviousButton" runat="server"

 CausesValidation="False" CommandName="MovePrevious" Text="Previous" />
 <des:Button ID="StepNextButton" runat="server"

 CommandName="MoveNext" Text="Next" />
 </StepNavigationTemplate>
 <FinishNavigationTemplate>
 <des:Button ID="FinishPreviousButton" runat="server"

 CausesValidation="False" CommandName="MovePrevious" Text="Previous" />
 <des:Button ID="FinishButton" runat="server"

 CommandName="MoveComplete" Text="Finish" />
 </FinishNavigationTemplate>
</asp:Wizard>

On buttons whose CausesValidation property is true, make sure their Click event handler – NextButtonClick,
PreviousButtonClick, FinishButtonClick – tests PeterBlum.DES.Globals.Page.IsValid is true. If not, it should assign
e.Cancel to true so the wizard remains on the current page.

When using AJAX, if any of the controls are not shown until a callback occurs because they are not on the initial wizard step,
you must be sure to set up AJAX properly. For most types of controls, you will use the
PeterBlum.DES.AJAXManager.PreregisterForAJAX() method or the PreLoadForAJAX property found on
the PageManager control. For controls in the Peter’s Date and Time module, you will also need to create a dummy control
that is preregistered.

Details for all of these issues are in the steps for setting up AJAX in the General Features Guide.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 314 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

XML
DES does not interact with this control. Use it normally.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 315 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Using Validators with Third Party Controls
When a third party control subclasses from a native ASP.NET control that is already supported by the DES Validation
Framework, it will automatically support validation.

For any other control, see the Using Third Party Controls guide.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 316 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Analyzing the Page’s Validation configuration
When validation isn’t working correctly, there are a number of factors to look at. Did you setup the button or validators
correctly? Do the validation group names match? Did server side validation run? Was a validator disabled?

DES has a built in report that shows exactly how validation is setup on any page. There are two ways to activate this feature:
using a querystring parameter or adding a control to the page.

Querystring parameter
This technique only works when the page is requested the first time. It cannot evaluate the results of a postback.

To use it, add the desdebug= parameter to the querystring of your URL. You will get a menu. Select the Validation option.

Note: the desdebug= parameter has security restrictions based on IP address. If you are not running from http://localhost,
you will either have to expand the IP addresses allowed, or define a password. See “Running a Page from when the Server is
not local” in the General Features Guide.

Add a control to the page
This technique takes a little more work but gives you the analysis on every page request, including after the callback.

 Add a Literal or Label control to the page. Don’t worry, it can be removed when you are done. It will be inserting an
extensive element to your page so be prepared for the page to look dramatically different.

 In Page_Load(), call this code passing the Literal or Label control:

[C#]

PeterBlum.DES.Globals.Page.ValidationReport.OutputDescription(control);

[VB]

PeterBlum.DES.Globals.Page.ValidationReport.OutputDescription(control)

 When done, remove the control and line of code, or at least set the control to Visible=false.

http://localhost/�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 317 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Supporting a Reset or Clear Button
When you add a Reset button to the page, you expect that the data entry fields will return to their original contents if the user
clicks the button. You should also expect the Validators to return to their original state too. When the page is first shown, the
Validators should not show any messages. When the page is returned from a post back, the validation ErrorFormatters
associated with the original data should show.

DES makes this easy by automatically installing a client-side event handler for the Reset button. Specifically, the <form>
tag supports an onreset event and DES connects to it. If you have already assigned JavaScript code to this event handler, DES
will insert its code first with a trailing semicolon so that your code will continue to run.

If you want to turn off this feature, programmatically set the PeterBlum.DES.Globals.Page.UseOnResetEventHandler
property to false in the Page_Load() method. (It defaults to true.)

PeterBlum.DES.Globals.Page.UseOnResetEventHandler = false

A Reset button must be this type of tag: <input type='reset'>.

Some users also add a non-submitting button (<input type='button'>) with an onclick event to run some JavaScript
code. For example, that code may clear a group of text fields. Those changes will not cause any validation error message to
be updated. So DES provides some additional JavaScript for your button’s onclick event handler to call. Use the method
PeterBlum.DES.Globals.Page.GetValidateGroupScript() to return a string that contains the JavaScript
that runs validation on all Validator controls of a particular group.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 318 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

The ViewState and Preserving Properties for PostBack
DES attempts to limit the use of the ViewState. It preserves the states of Visible, Enabled, ReadOnly, and Text properties
for you. The rest you must elect to store.

To include a property on these control in the ViewState, do this in Page_Load():

Control.ViewStateMgr.TrackProperty("PropertyName")

For details on how DES uses the ViewState and the ViewStateMgr property, see “The ViewState and Preserving Properties
for PostBack” in the General Features Guide.

Example

Suppose that you want to preserve the AutoPostBack property on TextBox1:

TextBox1.ViewStateMgr.TrackProperty("AutoPostBack")

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 319 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Validation and the PostBackUrl Property
Submit controls provide the PostBackUrl property. This property can make validation very difficult to communicate to the
user and is not recommended when the page has validators and the submit control is set up to validate
(CausesValidation=true).

Here’s the problem. When you submit the page, server side validation occurs. (You should never assume client-side
validation will be protecting you as users can turn off javascript or have the wrong browser.) If it finds a problem, it should
prevent you from taking a further action, like saving the data and going to another page. Instead, the current page should be
redrawn with error messages shown.

When you use PostBackUrl, it always jumps to the page specified by PostBackUrl, regardless of the validity of the page.
(This only occurs when client-side validation has validated the page.) While validation will run on the original page
(PostBackUrl still runs through the page cycle and redirects before OnPreRender), the user will always be placed on the next
page. That page does not have the validator controls of the original page. So you have to handle this case. It’s not easy:

 You look at the web controls defined on the Page.PreviousPage and test each validator’s IsValid property for false.

 You provide a user interface on this second page that tells the user there were errors

 You provide a way to go back to the original page

 The original page needs to be validated against that data so error messages now appear on the page so the user has a
context for the error messages.

It is so much easier just to leave PostBackUrl blank and use the validation of the original page. If it passes validation
(PeterBlum.DES.Globals.Page.IsValid is true) in your post back event handler, call Server.Transfer() to show the
second page. Otherwise, return to the current page with all validators showing their error messages. The Page.PreviousPage
property is set up by Server.Transfer().

http://msdn2.microsoft.com/en-us/library/ms178140.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 320 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Running Validation With Client-Side Scripts
Programmers can easily force a Validator to validate by calling its Validate() method in server side code. To do the same
on the client-side, call the DES_FieldChanged() function. DES_FieldChanged() takes one parameter, the ClientID
of the field whose value has changed. It returns nothing. DES_FieldChanged() runs all Validators attached to the field
that was changed. It ignores the Group property but respects Enabler and Enabled properties.

DES_FieldChanged("TextBox1");

When run, the Validator will show or hide its ErrorFormatter, update ValidationSummary and CombinedErrorMessages
controls that support it, and use the features of “Drawing The User’s Attention To The Error” associated with onchange
events.

To see if the field is valid or not after calling DES_FieldChanged(), call DES_IsValid(). It takes one parameter, the
ClientID of the field that was validated. It returns true for valid, false for invalid, and null if there are no validators
attached.

DES_FieldChanged("TextBox1");
if (DES_IsValid("TextBox1") == true)
 // code to run when its valid
else
 // code to run when its not valid

Example: Changing The Value Of A TextBox

Suppose you have a RequiredTextValidator associated with a TextBox and have written a JavaScript function to change the
text within the TextBox. You want to validate the Validator based on this change.

Here is the ASP.NET text:

<asp:TextBox id=TextBox1 runat="server"></asp:TextBox>
<des:RequiredTextValidator id=RequiredTextValidator1 runat="server"
 ErrorMessage="Required" ControlIDToEvaluate="TextBox1"
 SupportClientSideLookupByID="True" />

Set up the script on the page as a function. This function takes the ClientID to the TextBox and the new text value. The
DES_GetById() function used here is a browser independent way to convert the ID into the element object.

<script type="text/javascript" language="javascript">
function ChangeTextBox(pTextBoxID, pNewText)
{
 var vTBFld = DES_GetById(pTextBoxID);
 vTBFld.value = pNewText; // change the text
 DES_FieldChanged(pTextBoxID); // signal validators to update
}
</script>

Evaluating all Validators for a Validation Group

If you want to evaluate all validators for a Validation Group, call the DES_ValidateGroup() function.
DES_ValidateGroup() takes the validation group name and returns true if all validators are valid and false if not.

var vIsValid = DES_ValidateGroup("group1");

You can have DES install this script into your code on the server side using the
PeterBlum.DES.Globals.Page.GetValidationGroupScript Method.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 321 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Changing The Properties of a Validator With Client-Side Scripts
Programmers can easily change any of the server side properties in the Page_Load() method. What about doing the same
on the client side? Here are the steps.

1. Set the SupportClientSideLookupByID property to true on the Validator control whose values you want to
evaluate or modify on the client side. This will assign the control’s ClientID to the client-side representation of the
Validator so that you can look it up.

2. Call the client-side function DES_FindAOById() in your JavaScript code. It takes one parameter, the ClientID of
the Validator control. It returns an object representing the Validator, called the “Action Object”. If it does not find
the ClientID, it returns null. See “Adding Your JavaScript to the Page”.

var vAO = DES_FindAOById("ClientID");

3. If DES_FindAOById() returns an Action Object, evaluate or modify its properties. To learn about each property,
see the “Developers Guide.pdf”. If you want to modify the Enabled state, DES provides the DES_SetEnabled()
function on the client-side for you to call. It takes two parameters: the Action Object (returned from
DES_FindAOById) and the enabled state (as a Boolean).

DES_SetEnabled(vAO, false); // disables the control

Example Setting the Enabled State

Suppose you have a RequiredTextValidator associated with a TextBox and two radio buttons which enable and disable the
RequiredTextValidator.

Here is the ASP.NET text:

<asp:TextBox id="TextBox1" runat="server"></asp:TextBox>
<des:RequiredTextValidator id="RequiredTextValidator1" runat="server"
 ErrorMessage="Required" ControlIDToEvaluate="TextBox1"
 SupportClientSideLookupByID="True" />

<asp:RadioButton id="RadioButton1" runat="server" Text="Disabled"
 GroupName="Group1" Checked="True"></asp:RadioButton>
<asp:RadioButton id="RadioButton2" runat="server" Text="Enabled"
 GroupName="Group1"></asp:RadioButton>

Set up the script on the page as a function. It takes the ClientID to RequiredTextValidator1 and the enabled flag.

<script type="text/javascript" language="javascript">
function ChangeEnabled(pClientID, pEnabled)
{
 var vAO = DES_FindAOById(pClientID);
 if (vAO != null)
 {
 DES_SetEnabled(vAO, pEnabled);
 }
}
</script>

Attach onclick events to the radio buttons to run ChangeEnabled(). Do this programmatically in Page_Load():

[C#]

RadioButton1.Attributes.Add("onclick", "ChangeEnabled('" +
 RequiredTextValidator1.ClientID + "', false);");
RadioButton2.Attributes.Add("onclick", "ChangeEnabled('" +
 RequiredTextValidator1.ClientID + "', true);");

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 322 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

[VB]

RadioButton1.Attributes.Add("onclick", "ChangeEnabled('" + _
 RequiredTextValidator1.ClientID + "', false);")
RadioButton2.Attributes.Add("onclick", "ChangeEnabled('" + _
 RequiredTextValidator1.ClientID + "', true);")

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 323 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Adding Client-Side Validation Scripts Within Your Server Side Code
Click on any of these topics to jump to them:

 PeterBlum.DES.Globals.Page.GetPostBackEventReference method

 PeterBlum.DES.Globals.Page.GetPostBackClientHyperlink method

 PeterBlum.DES.Globals.Page.GetValidationGroupScript Method

PeterBlum.DES.Globals.Page.GetPostBackEventReference method

Use GetPostBackEventReference() with controls that submit the page when you want to validate first.
GetPostBackEventReference() returns a string containing the JavaScript to establish the client-side code that
validates and submits the page. It is the same concept as
System.Web.UI.Page.GetPostBackEventReference().

All native controls that submit the page can be registered for client-side code using the methods described in “Using Native
Button Controls to Submit the Page”.

All DES supplied controls that submit the page are automatically registered and require no additional work on your part. (See
“DES’s Button, LinkButton, and ImageButton Controls”.)

All other controls need to have their onclick event handler call the client-side validation code and the ASP.NET framework's
__doPostBack() function, which submits the page. Use this method for these controls.

This method will not set up server-side validation. For that, see “Validating With All Other PostBack Event Handlers”.

The string returned will include two parts: DES validation for the group specified and a call to "__doPostBack". It sets up the
call to __doPostBack() by using System.Web.UI.Page.GetPostBackEventReference().

Note: This string does not contain the lead text "javascript:" which is required for hyperlinks. Use
PeterBlum.DES.Globals.Page.GetPostBackClientHyperlink() to establish a string with that lead text.

[C#]

public string GetPostBackEventReference(Control pControl,
 string pGroup);

public string GetPostBackEventReference(Control pControl,
 string pArgument, string pGroup);

public string GetPostBackEventReference(Control pControl,
 string pArgument, string pGroup, bool pCausesValidation);

public string GetPostBackEventReference(Control pControl,
 string pArgument, string pGroup, bool pCausesValidation,
 string pConfirmMessage);

public string GetPostBackEventReference(PostBackOptions pOptions);

[VB]

Public Function GetPostBackEventReference(ByVal pControl As Control, _
 ByVal pGroup As String) As String

Public Function GetPostBackEventReference(ByVal pControl As Control, _
 ByVal pArgument As String, ByVal pGroup As String) As String

Public Function GetPostBackEventReference(ByVal pControl As Control, _
 ByVal pArgument As String, ByVal pGroup As String, _
 ByVal pCausesValidation As Boolean) As String

http://msdn2.microsoft.com/en-us/library/Aa334488.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 324 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Public Function GetPostBackEventReference(ByVal pControl As Control, _
 ByVal pArgument As String, ByVal pGroup As String, _
 ByVal pCausesValidation As Boolean,
 ByVal pConfirmMessage As String) As String

Public Function GetPostBackEventReference(
 ByVal pOptions As PostBackOptions) As String

Parameters

pControl

The submit control. It will not be modified.

pArgument

The parameter passed back to the server control. It is the second parameter in the
System.Web.UI.Page.GetPostBackEventReference method.

pGroup

The group name for Validators on the page that are run when this code is invoked. It can be "".

pCausesValidation

When true, set up validation. When false, prevent client-side validation. Usually you will pass false when
setting up AutoPostBack features that should not validate, such as a checkbox that must post back to draw other
controls.

pConfirmMessage

Optional confirmation message. When supplied, a JavaScript confirm() messagebox appears prior to submitting
the page. If the user clicks Cancel, the page is not submitted.

pOptions

Only available with the ASP.NET 2.0 version. The System.Web.UI.PostBackOptions class gives you a
number of additional features for post back.

GetPostBackEventReference() uses these properties and passes the rest to
Page.ClientScript.GetPostBackEventReference():

 RequiresJavaScriptProtocol

 ValidationGroup

 PerformValidation – when false, do not allow client-side validation

Return value

A string containing JavaScript to validate and submit the page.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebUIPageClassGetPostBackEventReferenceTopic1.asp�
http://msdn2.microsoft.com/library/xt3e2c7e(en-us,vs.80).aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 325 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

PeterBlum.DES.Globals.Page.GetPostBackClientHyperlink method

GetPostBackClientHyperlink() returns a string containing the JavaScript to establish the client-side code that
validates and submits the page. Use it with hyperlink href= attributes. It really is just a call to
GetPostBackEventReference() with the lead text “JavaScript:”.

This method will not set up server-side validation. For that, see “Validating With All Other PostBack Event Handlers”.

[C#]

public string GetPostBackClientHyperlink(Control pControl,
 string pArgument, string pGroup);

[VB]

Public Function GetPostBackClientHyperlink(ByVal pControl As Control, _
 ByVal pArgument As String, ByVal pGroup As String) As String

Parameters

pControl

The submit control. It will not be modified.

pArgument

The parameter passed back to the server control. It is used by the Command event handler on the server side control.

pGroup

The group name for Validators on the page that are run when this code is invoked. It can be "".

Return value

A string containing JavaScript to validate and submit the page. The string starts with the text “javascript:”.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 326 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

PeterBlum.DES.Globals.Page.GetValidationGroupScript Method

If you have a command that you want to validate the page without posting back, use the
PeterBlum.DES.Globals.Page.GetValidateGroupScript() method. Use it to return a string that contains
the JavaScript that runs validation on all Validator controls of a particular group. You will insert the string into the JavaScript
that you attach to your command’s onclick or another client-side event.

[C#]

public string GetValidateGroupScript(string pGroupName);

[VB]

Public Function GetValidateGroupScript(ByVal pGroupName As String) As String

Parameters

pGroupName

The menu or toolbar control.

Return value

A string containing the JavaScript that updates all Validators for the given group on the client side. The string is actually a
JavaScript function that itself returns a Boolean result: true if the page is valid and false if not. Your code can test the
result to determine if any JavaScript code that follows should be executed.

Example

Suppose that you have added a JavaScript function called ClearFields() to the page and want it used from Button1.
Here is how you would use GetValidateGroupScript():

[C#]

Button1.Attributes.Add("onclick", "ClearFields();" +
 PeterBlum.DES.Globals.Page.GetValidateGroupScript("") +
 "return false;";

[VB]

Button1.Attributes.Add("onclick", "ClearFields();" + _
 PeterBlum.DES.Globals.Page.GetValidateGroupScript("") + _
 "return false;"

Note: Use ‘return false;’ to prevent the button from submitting the page.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 327 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

ValidationSummary Control
The ValidationSummary control displays all errors on the page when the page is submitted. It is hidden until the user submits
the page and errors are found. It consolidates the errors into one area. (The Validator controls still report their errors unless
you elect to hide them.)

Click on any of these topics to jump to them:

 Features

 Using ValidationSummary Control

 When the Control Is Shown and Hidden

 Setting the Appearance and Behavior

 The Related Control Feature

 Adding ErrorMessages At Runtime

 Using the ValidationSummary as a Label for “There are errors”

 Adding a ValidationSummary Control

 Properties of the ValidationSummary Control

 HTML Structure of the ValidationSummary Control

You can have several ValidationSummary controls on the page to show the same error information above and below the form
fields. Or you may have different groups of fields, each with its own ValidationSummary control.

By default, the ValidationSummary control shows the same error message as shown on the Validator control reporting the
error. However, you can specify a second error message on each Validator control, in the SummaryErrorMessage property
to provide a different error description in the ValidationSummary control. For example, when your Validator’s error message
is “This field requires an entry”, that text is ambiguous when shown in a list of errors. Provide the error “The [Fieldname]
field requires an entry” in the SummaryErrorMessage.

This control provides extensive formatting properties including a header, footer, and different formats for the list of error
messages. There are separate style sheets for each of these elements. Here are several formats for the same list of errors.

This shows the default formatting:

This includes a header and a different list format:

Here is a heavily formatted ValidationSummary with a footer and hyperlinks on each of the error messages.

With some programming, you can develop your own appearance for the ValidationSummary Control. See the Developer’s
Kit.

The class PeterBlum.DES.ValidationSummary is subclassed from System.Web.UI.WebControls.WebControl. It
inherits all of the properties, methods, and events of WebControl.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.webcontrol.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 328 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Features
For a demo, see http://www.peterblum.com/DES/DemoValSum.aspx.

Like the native ValidationSummary control supplied with the .Net framework, it appears when the user submits and errors
were found. It shows the error messages found throughout the page in one place. It has much more features than the native
ValidationSummary.

 You can define a header and footer text string and control the horizontal alignment. (Microsoft’s only has a left-justified
header.)

 The header supports an optional image and includes formatting rules where to position the image against the text.

 The error messages can be shown with the following styles using the DisplayMode property:

o List – Each message is on its own line. You can define text that precedes each message such as a dash (“-”).

o BulletedList – A list of messages that uses the HTML tags: or . You determine what symbol
precedes each message: circle, disc, square, alphabetic, numeric, and roman.

o SingleParagraph – Each message is consolidated into one paragraph. You can define the text that separates each
message such as a semicolon or space.

o Table – A list style that permits changing the styles of alternating rows or assigning borders on each table row.

 Each error message can optionally support a hyperlink. When clicked, the focus is moved to the first field associated
with the error message.

 There are separate style classes for the overall validation summary and the error messages. It’s all placed into a <div>
control to allow you to develop nice borders and backgrounds.

 Since the ValidationSummary may appear on a very tall web form, users may not always see it. The ValidationSummary
can be connected to another field on the form that is shown and hidden simultaneously with the ValidationSummary.
For example, define a Label with the text “There are errors on the page” on the opposite side of the form. Or use this
feature to add other elements around the ValidationSummary that are not built into the control, such as an enclosing
table.

 If you have different validation groups, you may want multiple ValidationSummary controls. A ValidationSummary can
show any specific group or all groups at once.

 Use the AutoUpdate property to interactively change the ValidationSummary as the user corrects the fields. Once the
ValidationSummary is shown, each field change validation will also redraw the ValidationSummary. This way, users can
see their progress in correcting the errors.

 Use the ScrollIntoView property to scroll the ValidationSummary control into view when the user submits and an error
is displayed in the control.

 The ValidationSummary supports localization.

 The RelatedControl feature allows you to have the ValidationSummary show and hide another control on the page. Its
used for:

o To show a message elsewhere on the page telling the user to fix errors

o To show a message when errors were shown but now cleaned up

o To show a message when there are no errors on the page

o To augment the ValidationSummary control with additional HTML parts outside of the ValidationSummary
itself.

http://www.peterblum.com/DES/DemoValSum.aspx�
http://msdn2.microsoft.com/en-US/library/f9h59855(VS.80).aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 329 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Using ValidationSummary Control
For a demo, see http://www.peterblum.com/DES/DemoValSum.aspx.

To add the ValidationSummary control, see “Adding a ValidationSummary Control”.

Click on any of these topics to jump to them:

 When the Control Is Shown and Hidden

 Setting the Appearance and Behavior

 Overall Appearance

 Header

 Error Messages

 Footer

 The Related Control Feature

 Adding ErrorMessages At Runtime

 Using the ValidationSummary as a Label for “There are errors”

When the Control Is Shown and Hidden
This control is displayed when the user attempts to submit the page and validation errors are found. The control that submits
the page has a validation group name in its Group property. Set the ValidationSummary’s Group property to match the
button’s Group property value. If you want the ValidationSummary to display the errors from different groups, use a pipe (|)
delimited list of group names or “*” for all groups.

Normally the ValidationSummary control will change its contents to reflect the current list of errors each time the user
attempts to submit the page. You can override this behavior by setting AutoUpdate to true. It will first show errors based
on the AutoUpdateFirstShows property. Then it will update each time a validator shows or hides its error message.
AutoUpdateFirstShows defaults to showing when the user first attempts to submit the page. You can make the
ValidationSummary appear on the first error message or after at least 2-5 errors are shown.

With the ScrollIntoView property, the ValidationSummary control will scroll into view each time the user attempts to submit
the page, so they can review the errors.

See “When to Update Properties”.

http://www.peterblum.com/DES/DemoValSum.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 330 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Setting the Appearance and Behavior
Here are the elements to the ValidationSummary control:

Click on any of these topics to jump to them:

 Overall Appearance

 Header

 Error Messages

 Footer

Overall Appearance

The outer frame of the control, which contains the remaining parts. You often establish a border and background color on this
part. Edit these characteristics with the style sheet class DESValSummary, which is declared in the
\DES\Appearance\Validation\Validation.css file as follows:

.DESValSummary
{
 color: red;
}

By default, the ValidationSummary’s width is 100% of the containing control or Page. It’s a good idea to set the Width
property to a preferred size.

See “Overall Appearance Properties”.

Header

Error
Messages

Footer

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 331 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Header

The header provides text and an optional image before the error messages. Most of the time it appears above the error
messages. But you can place it to the left of the messages when you use the “paragraph style” for the error messages.

To add text to the header, set it in the HeaderText property. It accepts HTML, so you can create additional formatting. It also
allows the {COUNT} token to show the number of errors.

If you want an image to appear in the header, set its URL in the HeaderImageUrl property. By default, the image appears to
the left of the header text in separate columns. You can customize the relationship between text and image with the
HeaderElementPositions property.

See “Header Properties”.

The header uses the style sheet class DESValSummaryHeader to adjust its appearance. It is declared in the
\DES\Appearance\Validation\Validation.css file as follows:

.DESVALSummaryHeader
{
 color: red;
}
.DESVALSummaryHeader TR
{
 color: red;
}

If you want to show a single message without the individual error messages, set up the HeaderText to that message. Then set
DisplayMode to None.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 332 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Error Messages

The body of the ValidationSummary shows a list of the error messages from validators reporting errors. The text of these
messages comes from the Validators, either in the SummaryErrorMessage or ErrorMessage property, whichever is
defined.

Make it easier for the user to locate the field with an error by setting HyperLinkToField to true. Each error message will
become a hyperlink that when clicked, moves the focus to the control with the error.

There are several ways to present the error messages: a list, a “bulleted” list using the or tags, table, and,
paragraph, where messages are back-to-back without line breaks. They are set using the DisplayMode property.

Here are examples of each DisplayMode where 3 error messages are displayed.

DisplayMode: List

Each error message is shown on a separate line, optionally preceded by an image in the ListLeadImageURL property and
text in the ListLeadText property. You can add any HTML between the items with the ListRowSeparator.

DisplayMode: BulletList

The error messages are shown using the or tags for formatting. The BulletListType property determines the
type attribute for the or tags.

DisplayMode: SingleParagraph

Error messages are concatenated, with the SingleParagraphSeparator property providing a separator character. They word-
wrap at the overall width of the control.

DisplayMode: Table

The error messages are formatted in a one column table, where each error message gets its own row. Initially, this doesn’t
appear to be much different from the List style (which uses
 tags to separate error messages). However, with table
cells, you can apply a different style sheet to even and odd rows. This allows for different backgrounds on alternating rows.
You can also use the styles to include a border, such as a top border on each row or to change the justification of error
messages (for example, centering them). Normally each row uses the style sheet class of DESValSummaryErrors. The
alternating row uses the style sheet class of DESVALSummaryAltRows. Both are declared in the
\DES\Appearance\Validation\Validation.css file.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 333 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Style Sheet Classes

The DESValSummaryErrors class is associated with the error messages. Generally you edit it to change the font of the
errors. If you enable hyperlinks on error messages (with the HyperLinkToField property), they can have a different style by
declaring new styles of the same name like this “DESValSummaryErrors A”, “DESValSummaryErrors
A:hover”, “DESValSummaryErrors A:active”, and “DESValSummaryErrors A:link”. See an HTML style
sheet guide for more on setting up classes for particular tags.

These classes are declared in the \DES\Appearance\Validation\Validation.css file:

.DESValSummaryErrors
{
 color: red;
 margin-top:6px;
}

.DESVALSummaryErrors A
{
 color: red;
 margin-top:6px;
}

If you want to apply font styles to any of the tokens embedded in the SummaryErrorMessage property, see “Applying
Styles To Tokens”.

If you want certain validators to use alternative style sheets for their error messages, set their OtherStyles property to
Alternative. The ValidationSummary control will use these style sheet classes instead of those above:

.DESValSummaryErrorsAlt
{
 color: #ff8c00; /* dark orange */
 margin-top:6px;
}

.DESVALSummaryErrorsAlt A
{
 color: #ff8c00; /* dark orange */
 margin-top:6px;
}

See “Error Message Formatting Properties”.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 334 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Footer

Provides text that appears after the error messages.

To add text to the footer, set it in the FooterText property. It accepts HTML, so you can create additional formatting. It also
allows the {COUNT} token to show the number of errors.

See “Footer Properties”.

The header uses the style sheet class DESValSummaryFooter to adjust its appearance. It is declared in the
\DES\Appearance\Validation\Validation.css file as follows:

.DESVALSummaryFooter
{
 color: red;
}
.DESVALSummaryFooter TR
{
 color: red;
}

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 335 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

The Related Control Feature
The ValidationSummary control may not be the only element on the page that you want to appear while errors are shown.
Perhaps you want a label near the top of the page to say “Fix the errors”, while the ValidationSummary appears near to the
Submit button. Use the RelatedControlID property to let the ValidationSummary control the visibility of another control.

The RelatedControl can show when the ValidationSummary is hidden or visible depending on the
RelatedControlDisplayMode property. This gives you several ways to communicate errors:

 Show a message elsewhere on the page telling the user to fix errors. This is the default.

 Show a message when errors were shown but now cleaned up. Set RelatedControlDisplayMode to
AllErrorsFixed.

 Show a message when there are no errors on the page, even before any data entry. Set
RelatedControlDisplayMode to NoErrorsShown.

See “Related Control Properties”

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 336 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Adding ErrorMessages At Runtime
By design, the ValidationSummary only shows error messages from Validators on the page. Those validators must be
enabled and have their IsValid property set to false. A common situation is when a business object returns a list of error
messages that you want to show in the ValidationSummary. Use the AddMessage() method on the ValidationSummary
control to add those messages.

The AddMessage() method lets you add messages with optional HTML. You can associate them with a specific data entry
control so that the HyperLinkToField and AutoUpdate features work with the message.

Note: Since the ValidationSummary only shows on a postback, this method respects that and does not show when IsPostBack
= false. You can override this behavior by setting PeterBlum.DES.Globals.Page.IsPostBack to true when you call
AddMessage().

There are two forms of the AddMessage() method:

[C#]

public void AddMessage(string pMessage);

public void AddMessage(string pMessage,
 Control pDataEntryControl, bool pHideWhenChanged);

[VB]

Public Sub AddMessage(ByVal pMessage As String)

Public Sub AddMessage(ByVal pMessage As String, _
 ByVal pDataEntryControl As Control, _
 ByVal pHideWhenChanged As Boolean)

Parameters

pMessage

The error message. It can contain HTML tags.

pDataEntryControl

When assigned to a data entry control object, the error message will be connected to that control. If the
HyperLinkToField property is true, the message will include a hyperlink to move the focus to that control.

If you pass null/Nothing, the error message will remain visible after the user submits. In all other situations, the
error message is removed when the user clicks the submit button, even if there are other validation errors.

pHideWhenChanged

When pDataEntryControl is assigned, use this to determine if an edit to that data entry control will immediately hide
the message in the ValidationSummary. This requires the AutoUpdate property to be true. If this or the
AutoUpdate property is false, the error message will be removed when the user clicks the submit button, even if
there are other validation errors.

When you use the AddMessage(message) method, the error message will be removed when the user clicks the submit
button and when AutoUpdate refreshes the control, even if there are other validation errors.

Use the second form of AddMessage() to have more control over when there are validation errors.

The AddMessage(message) method always positions its errors at the end of the ValidationSummary’s list of errors. The
second form of AddMessage() positions them first, if the ValidationSummary is above validators and last if the
ValidationSummary is below validators.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 337 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Example

Adds two messages. The first will be a message without a data entry control. The second will connect to TextBox1.

[C#]

ValidationSummary1.AddMessage("Enter a smaller quantity");
ValidationSummary1.AddMessage("The password cannot contain your name",
 TextBox1, true);

[VB]

ValidationSummary1.AddMessage("Enter a smaller quantity")
ValidationSummary1.AddMessage("The password cannot contain your name", _
 TextBox1, True)

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 338 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Using the ValidationSummary as a Label for “There are errors”
Sometimes you want your page to show a label saying “There are errors” or perhaps a graphic above the entry fields. If you
are already using the ValidationSummary, you can add a label and hook it up with the RelatedControl feature. See “The
Related Control Feature”.

If there is no ValidationSummary on the page, here are two approaches.

Show when the user attempts to submit the page

Add a ValidationSummary control where the label should go. Then set these properties:

 HeaderText property – Set to the text of the label, such as “There are errors”

 HeaderImageUrl property – If you want an image, assign its URL here.

 DisplayMode property – Set to None.

 Group property – Set to the validation group name or “*” if you want to use it for all groups.

Show as edits are made

If you want a label to appear as edits are made, follow these steps:

1. Add a Label control with the desired text and style or add an Image control with the desired image.

2. Add this line of code in Page_Load():

PeterBlum.DES.Globals.Page.PostValidationUpdateScript =
 "DES_GetByID('" + Control.ClientID + "').style.display =
 gDES_PageIsValid ? 'none' : 'inline';"

Replace Control with the ID of the Label or Image control.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 339 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Adding a ValidationSummary Control
These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View
command to return to the link. Look for this in the Adobe Reader (shown v6.0)

These steps anticipate that the <%@ Register TagPrefix="des" %> tag and the <link> to the stylesheet file have
been established. If not, see “Preparing a page for DES controls” in the General Features Guide. It covers issues like
style sheets, AJAX, and localization.

1. Select the location on the page where the ValidationSummary will appear. The ValidationSummary creates a <div> tag
when written to the page. As a result, any HTML to put immediately after this control will appear on a new row of the
browser. So if you want the ValidationSummary to appear side-by-side with other HTML, use a <table> where the
ValidationSummary is within one cell and the other HTML is in another.

2. Add a ValidationSummary control to the page.

Visual Studio and Visual Web Developers Design Mode Users

Drag the ValidationSummary control from the Toolbox onto your web form.

Text Entry Users

Add the control to the <form> area:

<des:ValidationSummary id="[YourControlID]" runat="server" />

Programmatically creating the Validator control

 Identify the control which you will add the ValidationSummary control to its Controls collection. Like all
ASP.NET controls, the ValidationSummary can be added to any control that supports child controls, like Panel,
User Control, or TableCell. If you want to add it directly to the Page, first add a PlaceHolder at the desired location
and use the PlaceHolder.

 Create an instance of the ValidationSummary control class. The constructor takes no parameters.

 Assign the ID property.

 Add the ValidationSummary control to the Controls collection.

In this example, the ValidationSummary is created with an ID of “ValidationSummary1”. It is added to PlaceHolder1.

[C#]

PeterBlum.DES.ValidationSummary vVS = new PeterBlum.DES.ValidationSummary();
vVS.ID = "ValidationSummary1";
PlaceHolder1.Controls.Add(vVS);

Note: The namespace for these controls is PeterBlum.DES. If you prefer, add a using clause to that namespace on your
form.

 [VB]

Dim vVS As PeterBlum.DES.ValidationSummary = _
 New PeterBlum.DES.ValidationSummary()
vVS.ID = "ValidationSummary1"
PlaceHolder1.Controls.Add(vVS)

Note: The namespace for these controls is PeterBlum.DES. If you prefer, add an Imports clause to that namespace on
your form.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 340 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Guidelines for setting properties

 Design mode users can use the Properties Editor or the Expanded Properties Editor. (See “Expanded Properties
Editor” in the General Features Guide.) The SmartTag also offers some of the most important properties.

 Text entry users should add the properties into the <des:ControlClass> tag in this format:
propertyname="value"

 When setting a property programmatically, have a reference to the control’s object and set the property according to
your language’s rules.

3. Set the properties associated with the ValidationSummary. Here are some recommended properties to set:

 When you are using validation groups, the ValidationSummary will appear with error messages associated with the
submit button’s group. Use the Group property to control the groups.

 The ValidationSummary is contained within a <div> tag. The default <div> is the width of the page or containing
HTML element (like a table cell). If you don’t enclose it in something that controls its width, set the Width property
to the width that you’d like.

 Set the style of the error messages section with the DisplayMode property. All options have a number of supporting
properties to customize the format further. See “Error Messages”.

 If you want some text to precede the error messages, use the HeaderText property.

 Add hyperlinks to the error messages that set focus to the field with the error using HyperLinkToFields.

 Make the ValidationSummary update as errors are fixed by using the AutoUpdate property.

4. Here are some other considerations:

 If you are using an AJAX system to update this control, set the InAJAXUpdate property to true. Also make sure
the PageManager control or AJAXManager object has been setup for AJAX. See “Using these Controls With
AJAX” in the General Features Guide. Failure to follow these directions can result in incorrect behavior and
javascript errors.

 This control does not preserve most of its properties in the ViewState, to limit its impact on the page. If you need to
use the ViewState to retain the value of a property, see “The ViewState and Preserving Properties for PostBack” in
the General Features Guide.

 If you encounter errors, see the “Troubleshooting” section for extensive topics based on several years of tech
support’s experience with customers.

For a demo, see http://www.peterblum.com/DES/DemoValSum.aspx.

http://www.peterblum.com/DES/DemoValSum.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 341 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Properties of the ValidationSummary Control
The ValidationSummary control is subclassed from System.Web.UI.WebControls.WebControl. It contains additional
properties and methods not described here.

Click on any of these topics to jump to them:

 When to Update Properties

 Error Message Formatting Properties

 Overall Appearance Properties

 Header Properties

 Footer Properties

 Behavior Properties

 Related Control Properties

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.webcontrol.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 342 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

When to Update Properties
For an overview, see “When the Control Is Shown and Hidden”.

The Properties Editor lists these properties in the “When To Update” category.

 Group (string) – The ValidationSummary control shows the error messages of Validators whose Group property
matches the Group property on the submit control. Set this property to match the group name of a submit control. It will
not show error messages when a submit control’s Group differs from this property. For example, if you have a submit
control with “Group1”, this Validator will only show Group1 Validator errors when this property is also set to “Group1”.

The ValidationSummary can support multiple groups. This allows you to have one ValidationSummary on the page that
shows the error messages specific to the submit control’s group that activated it. To support multiple groups, enter each
group name separated by a pipe character. For example: “Group1|Group2” (case insensitive).

If you want to match to any submit control’s group, enter “*”.

When Group = "", it matches a submit control whose Group property is also "".

It defaults to "".

 AutoUpdate (Boolean) – Once the ValidationSummary control is shown, it can maintain the initial list of error messages
or remove them as the user corrects them. When true, the errors are removed as they are corrected without posting
back to the server. When false, the initial list of error messages remains until the user submits again.

When true, once the ValidationSummary is shown, any change to the Validators will be reflected, including new
errors. When all errors are fixed, the ValidationSummary control is removed from the page and will not show up again
unless the user clicks the submit control again.

By default, the ValidationSummary first shows when the user attempts to submit the page. From there, it updates until all
errors are gone. You can change this rule with the AutoUpdateFirstShows property, below.

It defaults to false.

 AutoUpdateFirstShows (enum PeterBlum.DES.AutoUpdateFirstShows) – When using AutoUpdate, this determines the
first time the ValidationSummary appears. It usually appears after the user attempts to submit. Change it to appear after a
certain number of errors are on the page.

The enumerated type PeterBlum.DES.AutoUpdateFirstShows has these values:

o Submit - User attempts to submit.

o OneError - At least one error is shown.

o TwoErrors - At least two errors are shown.

o ThreeErrors - At least three errors are shown.

o FourErrors - At least four errors are shown.

o FiveErrors - At least five errors are shown.

It defaults to AutoUpdateFirstShows.Submit.

 ScrollIntoView (enum PeterBlum.DES.ScrollIntoViewStates) – When the page is submitted and the
ValidationSummary is shown, this scrolls the page on the client-side to show the ValidationSummary control. It has no
effect on server side generation of this control.

This feature requires that the browser support the DOM/DHTML method ‘scrollIntoView’ on <div> tags. For browsers
that do not, this property is ignored. Browsers that support this property are Internet Explorer for Windows, FireFox,
Netscape 6+, and Safari.

The values of the enumerated type PeterBlum.DES.ScrollIntoViewStates are:

o None – The feature is disabled. This is the default.

o Top – Assure that the top of the ValidationSummary is shown. This is usually best when the
ValidationSummary is above the data entry area.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 343 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

o Bottom – Assure that the bottom of the ValidationSummary is shown. This is usually best when the
ValidationSummary is below the data entry area.

The actual scrolling is handled by the browser using the DOM/DHTML scollIntoView() method. DES asks the
browser to assure that the top or bottom of the ValidationSummary is in the view. As a result, the browser may not fully
expose the ValidationSummary and the user may still need to do some scrolling.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 344 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Error Message Formatting Properties
For an overview, see “Error Messages”.

The Properties Editor lists these properties in the “Error Message Formatting” category.

 DisplayMode (enum PeterBlum.DES.ValidationSummaryDisplayMode) – Determines how error messages are
displayed. See “Error Messages” for pictures of each style.

The enumerated type PeterBlum.DES.ValidationSummaryDisplayMode has these values:

o None – Do not display the error messages. This is useful when you want to show a single piece of text instead
of the error messages. That text should be assigned to the HeaderText property.

o List - Each error message is shown on a separate line, optionally preceded by an image in the
ListLeadImageURL property and text in the ListLeadText property. You can add any HTML between the
items with the ListRowSeparator.

o BulletList – The error messages are shown using the or tags for formatting. The
BulletListType property determines the type attribute for the or tags.

o SingleParagraph – Error messages are concatenated, with the SingleParagraphSeparator property
providing a separator character. They word-wrap at the overall width of the control.

o Table – The error messages are formatted in a one column table, where each error message gets its own row.
This allows for different backgrounds on alternating rows.

Odd number rows use the style sheet class of DESValSummaryErrors. The alternating rows use the style
sheet class of DESVALSummaryAltRows. Both are declared in the
\DES\Appearance\Validation\Validation.css file.

It defaults to ValidationSummaryDisplayMode.BulletList.

 ErrorMessagesCssClass – Provides the style sheet class name used for all error messages.

It defaults to “DESValSummaryErrors”.

These styles are declared in \DES\Appearance\Validation\Validation.css:

 .DESValSummaryErrors
 {
 color: red;
 margin-top:6px;
 }

 .DESVALSummaryErrors A
 {
 color: red;
 margin-top:6px;
 }

If DisplayMode = Table and TableAltRowCssClass is associated with another style sheet class name, this will appear
on odd rows including the first row.

 ErrorMessagesCssClass_Alt – Provides the style sheet class name used for error messages of validators whose
OtherStyles property is set to Alternative. It only affects the error message itself (plus the hyperlink), not the
overall row, which is managed by ErrorMessagesCssClass and TableAltRowCssClass.

It defaults to “DESValSummaryErrorsAlt”.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 345 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

These styles are declared in \DES\Appearance\Validation\Validation.css:

 .DESValSummaryErrorsAlt
 {
 color: #ff8c00; /* dark orange */
 margin-top:6px;
 }

 .DESVALSummaryErrorsAlt A
 {
 color: #ff8c00; /* dark orange */
 margin-top:6px;
 }

 HyperLinkToFields (Boolean) – When true, each error message becomes a hyperlink. When clicked, the focus will
jump to the first field associated with the error. When false, the text is not shown as a hyperlink. It defaults to false.

The control assigned to the Validator’s ControlIDToEvaluate property is where focus jumps when the user clicks on
the hyperlink. When using a CustomValidator or IgnoreConditionValidator, be sure to assign ControlIDToEvaluate if
you want it to offer a hyperlink. For MultiConditionValidators and others that have a list of controls, the first control
identified in the list of controls is used.

 HyperLinksToolTip (string) – When HyperLinkToFields is true, the error messages section can include a tooltip to
describe what happens if they click. When this is "", no tooltip is shown. It defaults to “Click to select the
field”.

 HyperLinksToolTipLookupID (string) – Gets the value for HyperLinksToolTip through the String Lookup System.
(See “String Lookup System” in the General Features Guide.) The LookupID and its value should be defined within
the String Group of ValidateMisc. If no match is found OR this is blank, HyperLinksToolTip will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 ListLeadImageURL (string) – Used when DisplayMode = List. Its value precedes each error message. Use it to add
an image that differs from what you can do with and tags. It defaults to "".

When ListLeadImageURL and ListLeadText are both assigned, the image appears to the left of the text. This allows
you to use ListLeadText to insert some space (like ‘ ’) between the image and the error message.

You can put a tilde (“~”) as the first character. The tilde will be replaced by the path to the web application. This allows
you to relocate the web application without updating the property. For example, if your web app starts at
http://localhost/MyApp and the image is in /MyApp/Images/Image.gif, set this to “~/Images/Image.gif”. Later when the
site relocates to a real domain where http://www.mydomain.com/images/image.gif references the file, it will continue to
work.

 ListLeadText (string) – Used when DisplayMode = List. Its value precedes each error message. Use it to add
formatting that differs from what you can do with and tags, such as using "*" and "-". It defaults to "".

 ListRowSeparator (string) – Used when DisplayMode = List. Normally, error messages are preceded by the
ListLeadText and followed by a
 tag. The ListRowSeparator allows you to add HTML that appears after the

 to separate one error message from another. Typically, this will be used with the <hr /> tag although one could
set up an image to go between them.

When assigned, this text is added after every error message’s
 except for the last one:

[ListLeadText]errormessage

[ListRowSeparator]

[ListLeadText]errormessage

http://localhost/MyApp�
http://www.mydomain.com/images/image.gif�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 346 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

[ListRowSeparator]

[ListLeadText]errormessage

It does not add a
 tag when defined. That’s because an <hr /> tag forms its own line. So the user will have to
add
 for tags that do not form its own line (like an tag).

Reminder: If your page follows the XHTML standard, make sure your tags conform to XHTML.

 BulletListType (enum PeterBlum.DES.BulletListType) - Used when DisplayMode = BulletList. It determines the
style of the bullets, using either or tags with a specific type attribute. The enumerated type
PeterBlum.DES.BulletListType has these values:

o Circle - <ul type='circle'>

o Disc - <ul type='disc'>

o Square - <ul type='square'>

o AlphaCharsUppercase - <ol type='A'>

o AlphaCharsLowercase - <ol type='a'>

o RomanNumeralsUppercase - <ol type='I'>

o RomanNumeralsLowercase - <ol type='i'>

o Numbers - <ol type='1'>

It defaults to BulletListType.Disc.

 SingleParagraphSeparator (string) – Used when DisplayMode = SingleParagraph. It is a string inserted between
each error message. It defaults to " " (a space).

 TableAltRowCssClass (string) – Used when DisplayMode = Table. Provides the style sheet class name used for even
rows. When "", the ErrorMessageCssClass value is used for all rows.

It defaults to “DESValSummaryAltRows”.

This style is declared in \DES\Appearance\Validation\Validation.css:

.DESValSummaryAltRows
{
 color: red;
 background-color: lightblue;
}

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 347 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Overall Appearance Properties
For an overview, see “Overall Appearance”.

The Properties Editor lists these properties in the “Overall Appearance” category.

 CssClass (string) – The style sheet class that is applied to the overall control. Use it to establish the standard font,
borders, size (or use the Width property), and background.

It defaults to “DESVALSummary”.

The style is declared in DES\Appearance\Validation\Validation.css:

.DESVALSummary
{
 color: Red;
}

 Width (System.Web.UI.WebControls.Unit) – The width of the control. By default, the width is 100% of the containing
block-type tag or the page if there is no containing tag.

 BackColor, BorderColor, BorderStyle, BorderWidth, Columns, Font, ForeColor, Style, and Height – These
properties are described in System.Web.UI.WebControls.WebControl Members.

Recommendation: Create a style sheet class and assign it to the CssClass property.

 InvisiblePreservesSpace (Boolean) – Determines if the ValidationSummary takes up space on the page when it is
invisible. When true, the style is set to visibility:hidden with no change to the display style. This makes it
preserve space. When false, the style is visibility:hidden;display:none. When the control becomes
visible once again, the display style is restored to its original value. It defaults to false.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.unit.aspx�
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.webcontrol_members.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 348 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Header Properties
For an overview, see “Header”.

The Properties Editor lists these properties in the “Header” category.

 HeaderText (string) – The text shown in the header. When "", no header is shown unless HeaderImageURL is
assigned. It defaults to "".

You can use these tokens in the text:

{COUNT} – The number of error messages listed.

{COUNT:singular:plural} – Helps build sentences where singular and plural forms are needed when you use the
{COUNT} token. For example, “There is 1 error.” and “There are 2 errors.”. You replace the term “singular” with the
singular form of the word. You replace the term “plural” with the plural form of the word. For example,
“{COUNT:error:errors}”.

It defaults to "".

 HeaderTextLookupID (string) – Gets the value for HeaderText through the String Lookup System. (See “String
Lookup System” in the General Features Guide.) The LookupID and its value should be defined within the String
Group of ValidateMisc. If no match is found OR this is blank, HeaderText will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 HeaderImageURL (string) – A URL to an image file that is shown in the header. It defaults to "".

Special Symbols for URLs

The “{APPEARANCE}” token will be replaced by the default path to the Appearance folder, which you defined as
you set up the web site.

Supports the use of the tilde (~) as the first character to be replaced by the virtual path to the web application.

 HeaderElementPositions (enum PeterBlum.DES.ValidationSummaryHeaderElementPositions) – When both
HeaderText and HeaderImageURL have text, this determines how the text and image are placed relative to each other.
Several of these styles create a <table>. The enumerated type PeterBlum.DES.HeaderElementPositions
has these values:

o ImageLeft – A two-column table with the image on the left and HeaderText on the right. This is the default.
The HeaderImageColumnWidth determines the size of the image column.

 These errors must be
corrected. Click on each to go
to the field.

o ImageRight – A two-column table with the HeaderText on the left and image on the right. The
HeaderImageColumnWidth determines the size of the image column.

These errors must be
corrected. Click on each to
go to the field.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 349 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

o ImageTop – A one column, two-row table with the image in the first row and text in the second row.

These errors must be corrected.
Click on each to go to the field.

o ImageBottom – A one column, two-row table with the text in the first row and image in the second row.

These errors must be corrected.
Click on each to go to the field.

o ImageBeforeText – No table is created. These two items are back-to-back

 These errors must be corrected. Click on each to go to the field.

o ImageAfterText – No table is created. These two items are back-to-back

These errors must be corrected. Click on each to go to the field.

 HeaderTextHorizonalAlign (enum System.Web.UI.WebControl.HorizontalAlign) – When changed to Left, Center,
Right or Justify, a table encloses the HeaderText, and it is aligned using this setting. When set to NotSet, the
text is left justified and no table is created. It defaults to HorizontalAlign.NotSet.

 HeaderImageHorizontalAlign (enum System.Web.UI.WebControl.HorizontalAlign) – The horizontal position of the
image in the header. It is only used when HeaderImageURL is assigned and HeaderElementPositions is not
ImageBeforeText or ImageAfterText. It defaults to HorizontalAlign.NotSet.

 HeaderTableVerticalAlign (enum System.Web.UI.WebControl.VerticalAlign) – The vertical position of the
HeaderText and HeaderImageURL within table cells. It is only used when both HeaderText and HeaderImageURL
are assigned and HeaderElementPositions forms a table for these elements. It defaults to VerticalAlign.NotSet.

 HeaderImageColumnWidth (string) – The minimum width of a header column containing an image. It is used when
HeaderElementPositions is set to ImageLeft or ImageRight. Images larger than the width always cause the
browser to widen the column. Use values showing either pixels or percentages. It defaults to "10%".

 HeaderCssClass – Provides the style sheet class name used for the header.

It defaults to “DESVALSummaryHeader”.

The style is declared in DES\Appearance\Validation\Validation.css:

.DESVALSummaryHeader
{
 color: Red;
}

.DESVALSummaryHeader TR
{
 color: Red;
}

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebuiwebcontrolshorizontalalignclasstopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebuiwebcontrolshorizontalalignclasstopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebuiwebcontrolsverticalalignclasstopic.asp�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 350 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Footer Properties
For an overview, see “Footer”.

The Properties Editor lists these properties in the “Footer” category.

 FooterText (string) – The text shown in the footer. When "", no footer is shown.

You can use these tokens in the text:

{COUNT} – The number of error messages listed.

{COUNT:singular:plural} – Helps build sentences where singular and plural forms are needed when you use the
{COUNT} token. For example, “There is 1 error.” and “There are 2 errors.”. You replace the term “singular” with the
singular form of the word. You replace the term “plural” with the plural form of the word. For example,
“{COUNT:error:errors}”.

It defaults to "".

 FooterTextLookupID (string) – Gets the value for FooterText through the String Lookup System. (See “String
Lookup System” in the General Features Guide.) The LookupID and its value should be defined within the String
Group of ValidateMisc. If no match is found OR this is blank, FooterText will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 FooterHorizonalAlign (enum System.Web.UI.WebControl.HorizontalAlign) – When changed to Left, Center,
Right or Justify, a table encloses the FooterText, and it is aligned using this setting. When set to NotSet, the
text is left justified and no table is created. It defaults to HorizontalAlign.NotSet.

 FooterCssClass – Provides the style sheet class name used for the footer.

It defaults to “DESVALSummaryFooter”.

The style is declared in DES\Appearance\Validation\Validation.css:

.DESVALSummaryFooter
{
 color: Red;
}

.DESVALSummaryFooter TR
{
 color: Red;
}

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebuiwebcontrolshorizontalalignclasstopic.asp�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 351 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Behavior Properties
The Properties Editor lists these properties in the “Behavior” category.

 InAJAXUpdate (Boolean) – When using AJAX on this page, set this to true if the control is involved in an AJAX
update. See “Using These Controls with AJAX” in the General Features Guide. It defaults to false.

 EnableClientScript (Boolean) – Determines if the ValidationSummary updates itself using client-side scripting. When
false, it updates on the server-side only. When true, it will use client-side scripting unless the browser doesn't
support the client-side scripting. It defaults to true.

Note: You can set all controls to a server-side only behavior when you set PeterBlum.DES.Globals.JavaScriptEnabled to
false in Page_Load().

 Enabled (Boolean) – Determines if the ValidationSummary is available or not. When false, the control is turned off
and performs no function, regardless of Validators that are reporting errors. It defaults to true.

Note: Traditionally, the Visible property of a control turns it off. Since ValidationSummary shows and hides itself
independently of Visible, it makes more sense to “enable” and “disable” the control.

 ViewStateMgr (PeterBlum.DES.ViewStateMgr) – Enhances the ViewState on this control to provide more optimal
storage and other benefits. Normally, the properties of this control and its segments are not preserved in the ViewState.
Just call ViewStateMgr.TrackProperty("propertyname") to record the property in the ViewState.

For more details, see “The ViewState and Preserving Properties for PostBack” in the General Features User’s
Guide.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 352 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Related Control Properties
For an overview, see “The Related Control Feature”.

The Properties Editor lists these properties in the “Related Control” category.

 RelatedControlID (string) – Allows you to set up another control that is shown and hidden when the
ValidationSummary is.

Here are some typical usages:

o A label that also appears on the page, saying "Fix the errors".

o An enclosing box with additional formatting that wasn't built into this Validator, such as images along the sides.

o Show a message when the errors are all resolved, using RelatedControlDisplayMode = AllErrorsFixed.

o Show a message so long as the ValidationSummary is hidden using RelatedControlDisplayMode =
NoErrorsShown.

Assign the ID property of the other control. It must be in the same or an ancestor naming container as the
ValidationSummary control. When it is "", no related control is set up.

Alternatively, the user can assign the RelatedControl programmatically.

It defaults to "".

 RelatedControl (System.Web.UI.Control) – A reference to another control. It serves the same purpose as
RelatedControlID. The RelatedControlID must specify a control in the same or ancestor naming container as the
ValidationSummary control. This property allows the control to be in any naming container. Assignment must be done
programmatically.

 RelatedControl_InvisiblePreservesSpace (Boolean) – Determines if the control specified by either RelatedIDControl
or RelatedControl takes up space on the page when it is invisible. When true, the style is set to
visibility:hidden with no change to the display style. This makes it preserve space. When false, the style is
visibility:hidden;display:none. When the control becomes visible once again, the display style is set to
inline. It defaults to true.

Note: Since it sets display attribute to "inline", it works well with tags that are inline oriented but poorly with those that
are block oriented. Block oriented tags include <table>, <p>, and <div>.

 RelatedControlDisplayMode (enum PeterBlum.DES.RelatedControlDisplayMode) – Determines when to show and
hide the Related Control, based on the state of the ValidationSummary control.

The enumerated type PeterBlum.DES.RelatedControlDisplayMode has these values:

o ErrorsShown – Show the Related Control any time the ValidationSummary is shown. For example, show a
message elsewhere on the page telling the user to fix errors.

o AllErrorsFixed – Show the Related Control after the ValidationSummary is removed because errors were
fixed. For example, show a message when errors were shown but now cleaned up.

o NoErrorsShown – Show the Related Control any time the ValidationSummary is hidden. For example, show
a message when there are no errors on the page, even before any data entry.

It defaults to RelatedControlDisplayMode.ErrorsShown.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 353 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

HTML Structure of the ValidationSummary Control
This control has a complex HTML structure. Its outermost tag is a <div>. It contains three optional sections: header, error
messages, and footer. The header and footer can be embedded in a <table> as determined by the
HeaderElementPositions, HeaderTextHorizontalAlign and FooterHorizontalAlign properties.

The default ValidationSummary lacks a header and footer. It shows the error messages using a bullet list style (<ul
type=disc>). Here is a sample of the default control’s HTML:

<div id="ValidationSummary1" class="DESValSummary">
 <ul type="disc" class="DESValSummaryErrors" >
 error message 1
 error message 2

</div>

Here is a sample with the header and footer when the properties do not put them into a table.

<div id="ValidationSummary1" class="DESValSummary">
 Here are the errors

 <ul type="disc" class="DESValSummaryErrors" >
 error message 1
 error message 2

 Please fix them.
</div>

Here is a sample where the header and footer are placed into a table because the horizontal alignment specifies to center
them.

<div id="ValidationSummary1" class="DESValSummary">
 <table width="100%" class="DESValSummaryHeader">
 <tr><td>Here are the errors</td></tr>
 </table>

 <ul type="disc" class="DESValSummaryErrors" >
 error message 1
 error message 2

 <table width="100%" class="DESValSummaryFooter">
 <tr><td>Please fix them.</td></tr>
 </table>
</div>

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 354 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

CombinedErrorMessages Control
ALERT: Requires a license covering Peter’s More Validators.

The CombinedErrorMessages control lets you combine error messages from several Validators using one ErrorFormatter. It
has several uses:

 When you are using an ErrorFormatter with an image, like , and there are several Validators that may appear
simultaneously, you will see several images, back-to-back. That looks strange. The CombinedErrorMessages control will
show just one image and display all of the relevant error messages.

 When you want to show all error messages in one place, add the CombinedErrorMessages control where you want to
show the error. The idea is similar to a ValidationSummary control except it appears as fields are changed and its
formatting matches other Validators.

Click on any of these topics to jump to them:

 Using the CombinedErrorMessages Control

 Adding the CombinedErrorMessages Control

 Properties for the CombinedErrorMessages Control

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 355 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Using the CombinedErrorMessages Control
For a demo, see http://www.peterblum.com/DES/DemoCombErrMsg.aspx.

This control is assigned a list of Validators whose error messages it shows. Those Validators supply the validation logic and
error messages. Add them to the Validators property, either as control ID or an object reference.

When assigned to a CombinedErrorMessages control, the Validator no longer contributes any HTML to the page. So it
cannot show its error message where it’s placed on the page. Instead, the CombinedErrorMessages control shows its error
message along with any other assigned Validator’s error message in one ErrorFormatter. The ValidationSummary still reports
errors associated with these Validators.

You can select any of the ErrorFormatters offered in DES within the ErrorFormatter property. By using one
ErrorFormatter, the CombinedErrorMessages control looks like a single Validator, only with a dynamically updated error
message based on the Validators to which it’s assigned.

The CombinedErrorMessages Control also provides an option to show the Required Field Marker, just like Validators do,
with the ShowRequiredFieldMarker property. It does not override the Validator’s Required Field Marker, nor does it affect
the formatting rules of the HiliteFields feature.

http://www.peterblum.com/DES/DemoCombErrMsg.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 356 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Adding the CombinedErrorMessages Control
These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View
command to return to the link. Look for this in the Adobe Reader (shown v6.0)

Here are the steps for using this control.

1. Add the desired Validators to the page. When used with the CombinedErrorMessages, its ErrorFormatter property is
ignored. So leave the default ErrorFormatter settings.

Note: Since the Validators will no longer show any HTML in their location, you can place them anywhere on the page.
However, it may still be easier to leave them next to the fields that they validate.

Note: Validators will still support their ShowRequiredFieldsMarker and HiliteFields properties.

If the CombinedErrorMessages control is not located nearby the field that is being validated, you may want to include
the name of the field in the error message. You can use the Label property and {LABEL} token in the ErrorMessage
property, if desired.

2. Add the CombinedErrorMessages control in the location where you want to see the error.

Visual Studio and Visual Web Developers Design Mode Users

Drag the CombinedErrorMessages control from the Toolbox onto your web form.

Text Entry Users

Add the control to the <form> area:

<des:CombinedErrorMessages id="[YourControlID]" runat="server" />

Programmatically Creating the Control

 Identify the control which you will add the CombinedErrorMessages control to its Controls collection. Like all
ASP.NET controls, the CombinedErrorMessages control can be added to any control that supports child controls,
like Panel, User Control, or TableCell. If you want to add it directly to the Page, first add a PlaceHolder at the
desired location and use the PlaceHolder.

 Create an instance of the CombinedErrorMessages control class. The constructor takes no parameters.

 Assign the ID property.

 Add the CombinedErrorMessages control to the Controls collection.

In this example, the CombinedErrorMessages control is created with an ID of “CombinedErrorMessages1”. It is added to
PlaceHolder1.

[C#]

PeterBlum.DES.CombinedErrorMessages vCEM =
 new PeterBlum.DES.CombinedErrorMessages();
vCEM.ID = "CombinedErrorMessages1";
PlaceHolder1.Controls.Add(vCEM);

Note: The namespace for these controls is PeterBlum.DES. If you prefer, add a using clause to that namespace on your
form.

 [VB]

Dim vCEM As PeterBlum.DES.CombinedErrorMessages = _
 New PeterBlum.DES.CombinedErrorMessages()
vCEM.ID = "CombinedErrorMessages1"
PlaceHolder1.Controls.Add(vCEM)

Note: The namespace for these controls is PeterBlum.DES. If you prefer, add an Imports clause to that namespace on
your form.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 357 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Guidelines for setting properties

 Design mode users can use the Properties Editor or the Expanded Properties Editor. (See “Expanded Properties
Editor” in the General Features Guide.) The SmartTag also offers some of the most important properties.

 Text entry users should add the properties into the <des:ControlClass> tag in this format:
propertyname="value"

 When setting a property programmatically, have a reference to the control’s object and set the property according to
your language’s rules.

3. Assign each Validator to the Validators property. For example:

<des:CombinedErrorMessages id="CombinedErrorMessages1" runat="server">
 <Validators>
 <des:ValidatorControlConnection ControlID="RequiredTextValidator1" />
 <des:ValidatorControlConnection ControlID="DataTypeCheckValidator1" />
 </Validators>
</des:CombinedErrorMessages>

4. Multiple error messages can be separated by line breaks (“list style”) or text (“paragraph style”). Use the ListStyle
property to select the format and the ListLeadText and ParagraphSeparator properties to customize the formatting.

5. If any of the Validators have their EnableClientScripts property set to false, also set the EnableClientScripts
property on the CombinedErrorMessages to false.

6. If you want to show the Required Field Marker, set the ShowRequiredFieldMarker property to true.

7. Here are some other considerations:

 If you are using an AJAX system to update this control, set the InAJAXUpdate property to true. Also make sure
the PageManager control or AJAXManager object has been setup for AJAX. See “Using these Controls With
AJAX” in the General Features Guide. Failure to follow these directions can result in incorrect behavior and
javascript errors.

 This control does not preserve most of its properties in the ViewState, to limit its impact on the page. If you need to
use the ViewState to retain the value of a property, see “The ViewState and Preserving Properties for PostBack” in
the General Features Guide.

 If you encounter errors, see the “Troubleshooting” section for extensive topics based on several years of tech
support’s experience with customers.

For a demo, see http://www.peterblum.com/DES/DemoCombErrMsg.aspx.

http://www.peterblum.com/DES/DemoCombErrMsg.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 358 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Properties for the CombinedErrorMessages Control
The class PeterBlum.DES.CombinedErrorMessages is subclassed from
System.Web.UI.WebControls.WebControl. It inherits all of the properties, methods, and events of WebControl.
However, it ignores (and in the Properties Editor, hides) all formatting properties because the ErrorFormatter property
defines formatting.

Click on any of these topics to jump to them:

 Setting the Validators Properties

 Appearance Properties

 Behavior Properties

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.webcontrol.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 359 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Setting the Validators Properties
The Properties Editor lists these properties in the “Validators” category.

 Validators (PeterBlum.DES.ValidatorControlConnectionCollection) – Identifies each Validator control that will
contribute its ErrorMessage to this control.

This property is a collection of PeterBlum.DES.ValidatorControlConnection objects. You can assign the
control’s ID to the ValidatorControlConnection.ControlID property or a reference to the control in the
ValidatorControlConnection.ControlInstance property. When using the ControlID property, the control must be in the
same or an ancestor naming container. If it is in another naming container, use ControlInstance.

Note: Be sure that the control assigned to this collection has the runat=server property.

Adding to Validators with ASP.NET Declarative Syntax

Validators are a type of collection. Therefore its ASP.NET text is nested as a series of child controls within the
<Validators> tag. Here is an example.

<des:CombinedErrorMessages id="CombinedErrorMessages1" runat="server">
 <Validators>
 <des:ValidatorControlConnection ControlID="RequiredTextValidator1" />
 <des:ValidatorControlConnection ControlID="DataTypeCheckValidator1" />
 </Validators>
</des:CombinedErrorMessages>

Adding to Validators Programmatically

Use the Validators.Add() method to add an entry. This overloaded method takes one parameter. Choose from the
following:

 A reference to the control itself. This is the preferred form.

 A string giving the ID of the control. Do not use this when the control is not in the same naming container.

This example shows how to update an existing PeterBlum.DES.ValidatorControlConnection and add a
new one. Suppose the ASP.NET code looks like the text above and the RequiredTextValidator1 control is not in the
same or ancestor naming container. Also suppose the control referenced in the property DataTypeCheckValidator2
control must be added.

[C#]

uses PeterBlum.DES;
...
ValidatorControlConnection vConnection =
 (ValidatorControlConnection) CEM1.Validators[1];
vConnection.ControlInstance = RequiredTextValidator1;
// add DataTypeCheckValidator2. It can be either a control reference or its ID
CEM1.Validators.Add(DataTypeCheckValidator2);

[VB]

Imports PeterBlum.DES
...
Dim vConnection As ValidatorControlConnection = _
 CType(CEM1.Validators(1), ValidatorControlConnection)
vConnection.ControlInstance = RequiredTextValidator1
' add DataTypeCheckValidator2. It can be either a control reference or its ID
CEM1.Validators.Add(DataTypeCheckValidator2)

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 360 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Appearance Properties
The Properties Editor lists these properties in the “Appearance” category.

 ErrorFormatter (various subclasses of PeterBlum.DES.BaseErrorFormatter) – Describes the appearance of the error
message on the page. See “ErrorFormatters: Customizing the Appearance of the Error Message”.

This property supersedes the ErrorFormatter property on each Validator that is identified in the Validators property. In
fact, the Validators will act like their ErrorFormatter property has been turned off.

 ShowRequiredFieldMarker (Boolean) – When true, the RequiredFieldMarker control will be inserted to the left of
the CombinedErrorMessages control automatically. See “Other Validator Properties that Customize the Appearance”. It
defaults to false.

 NoErrorFormatter – Displays text and/or an image when there is no error. See “Other Validator Properties that
Customize the Appearance”.

 ListStyle (Boolean) – When true, multiple error messages will be shown in list style, with line breaks between each
error message. List style uses the ListLeadText property to establish additional formatting. When false, multiple error
messages will be shown in paragraph style, with the text of the ParagraphSeparator property between each message. It
defaults to false.

Note: Error messages shown in tooltips, such as in the Image with Tooltip ErrorFormatter
(ToolTipImageErrorFormatter class) will only use line breaks on Internet Explorer. Other browsers do not support
line breaks in tooltips. They will switch to paragraph style.

 ListLeadText (string) – When using list style formatting, this text precedes each error message when there are two or
more error messages shown. It defaults to "".

 ParagraphSeparator (string) – When using paragraph style formatting, this text separates each error message. It
defaults to " " (a space).

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 361 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Behavior Properties
The Properties Editor lists these properties in the “Behavior” category.

 InAJAXUpdate (Boolean) – When using AJAX on this page, set this to true if the control is involved in an AJAX
update. See “Using These Controls with AJAX” in the General Features Guide. It defaults to false.

 Visible (Boolean) – When false, this control is entirely unused. It defaults to true.

 ShowFirstMsgOnly (Boolean) – While the CombinedErrorMessages control is designed to show several validators error
messages simultaneously, some developers believe it’s easier for their users to see just one error message at a time.
When you set this property to true, only the first Validator that is invalid will show its error message. As that one is
fixed, the CombinedErrorMessages control will show the next Validator that is invalid. It uses the order of Validators in
the Validators property to determine first, second, etc.

It defaults to false.

 EnableClientScript (Boolean) – Determines if client-side functionality is set up. When true, it sets up client-side
scripting for this control. When false, no client-side code is written.

You should always set this to false when any of the attached Validators do not have client-side scripting enabled.
Unpredictable client-side behavior will occur if to you do not. This includes:

o When the Validator.EnableClientScript property is false

o On a CustomValidator without a client-side evaluation function.

o On an IgnoreConditionValidator.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 362 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Required Field Marker Controls
Many web sites provide a special symbol near each field that requires an entry. DES defines this as the Required Field
Marker, a textual or graphical symbol to indicate that a field requires an entry. In addition, those pages often have a
description on the form that helps the user understand that special symbol. DES makes it easy to support these concepts.

Click on any of these topics to jump to them:

 RequiredFieldMarker Control

 RequiredFieldsDescription Control

 Setting up the Global Defaults

 Adding a RequiredFieldMarker Control

 Properties of the RequiredFieldMarker Control

 Adding a RequiredFieldsDescription Control

 Properties of the RequiredFieldsDescription Control

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 363 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

RequiredFieldMarker Control
For a demo, see http://www.peterblum.com/DES/DemoRFM.aspx.

The RequiredFieldMarker control shows the Required Field Marker. Just add it in the desired location, and it will use your
global defaults for the Required Field Marker, whether it is textual or an image. It defaults to the image shown to the right of
the textbox below.

To add the control, see “Adding a RequiredFieldMarker Control”.

Global defaults avoid editing the symbol as you add each control, and you can edit the appearance of this control globally.
For example, you build your web site with the RequiredFieldMarker set to an asterisk (“*”). Before release, your graphic
artist provides an image file to replace the asterisk. You only need to change the globals. See “Setting up the Global
Defaults”.

In case you need to change the formatting on a page, the RequiredFieldMarker has properties to override the global defaults.
See “Properties of the RequiredFieldMarker Control”.

Each Validator control includes the ShowRequiredFieldMarker property. When set to true, it automatically adds the
RequiredFieldMarker control to the left of the Validator control.

Note: If your Validator uses the Enabler property, the RequiredFieldMarker remains visible even if the Validator is disabled.
Similarly, if the data entry control has its visibility or enabled state changed, the RequiredFieldMarker remains visible. To
avoid this, set up a FieldStateController that shows and hides the RequiredFieldMarker control as needed.

http://www.peterblum.com/DES/DemoRFM.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 364 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

RequiredFieldsDescription Control
For a demo, see http://www.peterblum.com/DES/DemoRFM.aspx.

The RequiredFieldsDescription control describes the purpose of the Required Field Marker to the user. It will also use global
defaults for the description, making it consistent throughout your site. It is often placed above the fields on the form, as
shown here.

To add the control, see “Adding a RequiredFieldsDescription Control”.

The RequiredFieldsDescription control provides a textual description of the required field marker. It can embed the marker
symbol, whether it is textual or graphical. You should set the description up globally. See “Setting up the Global Defaults”.
You can override them on a case-by-case basis. See “Properties of the RequiredFieldsDescription Control”.

http://www.peterblum.com/DES/DemoRFM.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 365 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Setting up the Global Defaults
Use the “RequiredFieldMarker and RequiredFieldDescription Defaults” topic of the Global Settings Editor to establish
your global defaults. The following properties are the global defaults for the RequiredFieldMarker and
RequiredFieldDescription:

 DefaultRequiredFieldMarkerText (string) – Used by the RequiredFieldMarker control to show text or any HTML as
the marker. When blank, the image is shown using DefaultRequiredFieldImageURL. When assigned, if it has the
token “{IMAGE}”, an image is set up with DefaultRequiredFieldImageURL to replace the token. It defaults to
" {IMAGE}".

 DefaultRequiredFieldMarkerTextLookupID (string) – Gets the value for DefaultRequiredFieldMarkerText
through the String Lookup System. (See “String Lookup System” in the General Features Guide.) The LookupID
and its value should be defined within the String Group of ValidateMisc. If no match is found OR this is blank,
DefaultRequiredFieldMarkerText will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 DefaultRequiredFieldsDescriptionText (string) – Used by the RequiredFieldsDescription control as its default text
when its Text property contains "{DEFAULT}". It can include the token "{IMAGE}" that will be replaced by the
HTML for an image using DefaultRequiredFieldImageURL. It can include the token "{MARKER}" that will be
replaced by the Required Field Marker, which takes into account both textual and image parts of the marker. The default
is "Fields marked{MARKER} require an entry.". Note that the default Required Field Marker starts with
“ ”.

 DefaultRequiredFieldsDescriptionTextLookupID (string) – Gets the value for
DefaultRequiredFieldsDescriptionText through the String Lookup System. (See “String Lookup System” in the
General Features Guide.) The LookupID and its value should be defined within the String Group of ValidateMisc. If
no match is found OR this is blank, DefaultRequiredFieldsDescriptionText will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 DefaultRequiredFieldImageURL (string) – The URL to an image file that is used as the required field marker. It is
used within both the RequiredFieldMarker and RequiredFieldsDescription controls. On the RequiredFieldMarker, the
DefaultRequiredFieldMarkerText must be blank or contain the token “{IMAGE}” to show this URL.

The default is "{APPEARANCE}/Validation/requireddot.gif". Here is the default image:

Special Symbols for URLs

The “{APPEARANCE}” token will be replaced by the default path to the Appearance folder, which you defined as
you set up the web site.

Supports the use of the tilde (~) as the first character to be replaced by the virtual path to the web application.

 DefaultRequiredFieldImageAltText (string) – The alternative text used by the tag when the image
(DefaultRequiredFieldImageUrl) cannot be loaded. It defaults to "*".

 DefaultRequiredFieldToolTip (string) – Used when the RequiredFieldMarker.ToolTip property is "", it supplies the
ToolTip. It defaults to "". A common value for this property is “Required”.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 366 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 DefaultRequiredFieldToolTipLookupID (string) – Gets the value for DefaultRequiredFieldToolTip through the
String Lookup System. (See “String Lookup System” in the General Features Guide.) The LookupID and its value
should be defined within the String Group of ValidateMisc. If no match is found OR this is blank,
DefaultRequiredFieldToolTip will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 367 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Adding a RequiredFieldMarker Control
Note: Alternatively, you can set the ShowRequiredFieldsMarker property on any Validator control positioned where you
want this control.

Visual Studio and Visual Web Developers Design Mode Users

Drag the RequiredFieldMarker control from the Toolbox onto your web form.

Text Entry Users

Add the control:

<des:RequiredFieldMarker id="[YourControlID]" runat="server" />

Programmatically Creating the Control

 Identify the control which you will add the RequiredFieldMarker control to its Controls collection. Like all ASP.NET
controls, the RequiredFieldMarker can be added to any control that supports child controls, like Panel, User Control, or
TableCell. If you want to add it directly to the Page, first add a PlaceHolder at the desired location and use the
PlaceHolder.

 Create an instance of the RequiredFieldMarker control class. The constructor takes no parameters.

 Assign the ID property.

 Add the RequiredFieldMarker control to the Controls collection.

In this example, the RequiredFieldMarker is created with an ID of “RequiredFieldMarker1”. It is added to PlaceHolder1.

[C#]

PeterBlum.DES.RequiredFieldMarker vRFM =
 new PeterBlum.DES.RequiredFieldMarker();
vRFM.ID = "RequiredFieldMarker1";
PlaceHolder1.Controls.Add(vRFM);

[VB]

Dim vRFM As PeterBlum.DES.RequiredFieldMarker = _
 New PeterBlum.DES.RequiredFieldMarker()
vRFM.ID = "RequiredFieldMarker1"
PlaceHolder1.Controls.Add(vRFM)

Note: If your Validator uses the Enabler property, the RequiredFieldMarker remains visible even if the Validator is disabled.
Similarly, if the data entry control has its visibility or enabled state changed, the RequiredFieldMarker remains visible. To
avoid this, set up a FieldStateController that shows and hides the RequiredFieldMarker control as needed.

For a demo, see http://www.peterblum.com/DES/DemoRFM.aspx.

http://www.peterblum.com/DES/DemoRFM.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 368 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Properties of the RequiredFieldMarker Control
The class PeterBlum.DES.RequiredFieldMarker is subclassed from PeterBlum.DES.LocalizableLabel
which itself is subclassed from System.Web.UI.WebControls.Label. It inherits all of the properties, methods, and
events of Label.

See also “Setting up the Global Defaults”.

 CssClass (string) – The style sheet class name for this control.

It defaults to “DESVALRequiredFieldMarker”.

This style is declared in \DES\Appearance\Validation\Validation.css:

.DESVALRequiredFieldMarker
{
}

You can change it in the class above or create a new class and assign the name to the CssClass property.

 Text (string) – The text for the marker. When it contains “{DEFAULT}” it uses global
DefaultRequiredFieldMarkerText property that you set in the Global Settings Editor.

It defaults to “{DEFAULT}”.

Change it if you want to override the globally defined text. When blank, the image is shown using
RequiredFieldImageURL. When assigned, if it has the token “{IMAGE}”, an image is set up with
RequiredFieldImageURL to replace the token.

 TextLookupID (string) – Gets the value for Text through the String Lookup System. (See “String Lookup System” in
the General Features Guide.) The LookupID and its value should be defined within the String Group of
ValidateMisc. If no match is found OR this is blank, Text will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 RequiredFieldImageURL (string) – The URL to an image file that is used as the required field marker. When it
contains “{DEFAULT}” it uses the global DefaultRequiredFieldImageURL property that you set in the Global
Settings Editor. See “Setting up the Global Defaults”.

It defaults to “{DEFAULT}”.

Change it if you want to override the globally defined image.

Special Symbols for URLs

The “{APPEARANCE}” token will be replaced by the default path to the Appearance folder, which you defined as
you set up the web site.

Supports the use of the tilde (~) as the first character to be replaced by the virtual path to the web application.

 ToolTip (string) – A tooltip can help answer “what is this?” as the user points to it. When "", it uses the global
DefaultRequiredFieldToolTip property that you set in the Global Settings Editor. See “Setting up the Global
Defaults”.

It defaults to "".

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.label.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 369 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Adding a RequiredFieldsDescription Control

Visual Studio and Visual Web Developers Design Mode Users

Drag the RequiredFieldsDescription control from the Toolbox onto your web form.

Text Entry Users

Add the control:

<des:RequiredFieldsDescription id="[YourControlID]" runat="server" />

Programmatically Creating the Control

 Identify the control which you will add the RequiredFieldsDescription control to its Controls collection. Like all
ASP.NET controls, the RequiredFieldsDescription can be added to any control that supports child controls, like Panel,
User Control, or TableCell. If you want to add it directly to the Page, first add a PlaceHolder at the desired location and
use the PlaceHolder.

 Create an instance of the RequiredFieldsDescription control class. The constructor takes no parameters.

 Assign the ID property.

 Add the RequiredFieldsDescription control to the Controls collection.

In this example, the RequiredFieldsDescription is created with an ID of “RequiredFieldsDescription1”. It is added to
PlaceHolder1.

[C#]

PeterBlum.DES.RequiredFieldsDescription vRFD =
 new PeterBlum.DES.RequiredFieldsDescription();
vRFD.ID = "RequiredFieldsDescription1";
PlaceHolder1.Controls.Add(vRFD);

[VB]

Dim vRFD As PeterBlum.DES.RequiredFieldsDescription = _
 New PeterBlum.DES.RequiredFieldsDescription()
vRFD.ID = "RequiredFieldsDescription1"
PlaceHolder1.Controls.Add(vRFD)

For a demo, see http://www.peterblum.com/DES/DemoRFM.aspx.

http://www.peterblum.com/DES/DemoRFM.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 370 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Properties of the RequiredFieldsDescription Control
The class PeterBlum.DES.RequiredFieldsDescription is subclassed from
PeterBlum.DES.LocalizableLabel which itself is subclassed from System.Web.UI.WebControls.Label.
It inherits all of the properties, methods, and events of Label.

See also “Setting up the Global Defaults”.

 CssClass (string) – The style sheet class name for this control.

It defaults to “DESVALRequiredFieldsDescription”.

These styles are declared in \DES\Appearance\Validation\Validation.css:

.DESVALRequiredFieldsDescription
{
 font-size: 8pt;
 font-style: italic;
}

You can change it in the class above or create a new class and assign the name to the CssClass property.

 Text (string) – The text for the marker. When it contains “{DEFAULT}”, it uses the global
DefaultRequiredFieldsDescriptionText property that you set in the Global Settings Editor. See “Setting up the
Global Defaults”.

It defaults to “{DEFAULT}”.

Change it if you want to override the globally defined text. If it has the token “{MARKER}”, it generates the Required
Field Marker from the globals for text and image. If it has the token “{IMAGE}”, an image is set up with
RequiredFieldImageURL to replace the token.

 TextLookupID (string) – Gets the value for Text through the String Lookup System. (See “String Lookup System” in
the General Features Guide.) The LookupID and its value should be defined within the String Group of
ValidateMisc. If no match is found OR this is blank, Text will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 RequiredFieldImageURL (string) – The URL to an image file that is used as the Required Field Marker. When it
contains “{DEFAULT}”, it uses the global DefaultRequiredFieldImageURL property that you set in the Global
Settings Editor. See “Setting up the Global Defaults”.

It defaults to “{DEFAULT}”.

Change it if you want to override the globally defined image.

Special Symbols for URLs

The “{APPEARANCE}” token will be replaced by the default path to the Appearance folder, which you defined as
you set up the web site.

Supports the use of the tilde (~) as the first character to be replaced by the virtual path to the web application.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.label.aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 371 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Page Level Properties and Methods
Most of the behavior and formatting of the Validation Framework come from controls and their properties. DES also
provides properties that are not found on any control. They are on the PeterBlum.DES.Globals.Page object, which you have
seen throughout this guide. PeterBlum.DES.Globals.Page offers “page-level” settings, values shared between all controls on
a page. Validators use many of them to provide formatting, such as “Drawing The User’s Attention To The Error” and
“Applying Styles To Tokens”. Buttons use them to configure the behavior when submitting a page. See “Page-Level
Properties used by Client-Side Validation”.

PeterBlum.DES.Globals.Page has several public methods. Submit controls use many of its methods as described in “Using
Native Button Controls to Submit the Page” and “Using the Menu Control to Validate the Page”.

The Validate() method and its companion property IsValid are on PeterBlum.DES.Globals.Page. See “Properties and
Methods to Validate the Page”.

This section covers other important properties and methods on PeterBlum.DES.Globals.Page.

Click on any of these topics to jump to them:

 Properties on PeterBlum.DES.Globals.Page

 Set Focus to the Control

 Show an Alert

 Change the Style of the Field With the Error

 Change the Style of Other Fields Nearby the Error

 Blinking the ErrorFormatter

 Confirm when Warnings are shown

 Applying Styles To Tokens

 Properties and Methods to Validate the Page

 Page-Level Properties used by Client-Side Validation

 Supporting a Reset or Clear Button

 Debugging PeterBlum.DES.Globals.Page Properties

 Methods on PeterBlum.DES.Globals.Page

 PeterBlum.DES.Globals.Page.Validate() method

 PeterBlum.DES.Globals.Page.EnableValidators() method

 PeterBlum.DES.Globals.Page.EnableClientScriptValidators() method

 PeterBlum.DES.Globals.Page.GetPostBackEventReference method

 PeterBlum.DES.Globals.Page.GetPostBackClientHyperlink method

 PeterBlum.DES.Globals.Page.GetValidationGroupScript Method

The Page property on PeterBlum.DES.Globals uses the class PeterBlum.DES.DESPage. When accessed through
PeterBlum.DES.Globals.Page, you will have an object that is unique to the current thread. It is really a companion to the
Page object of a web form, hosting details related to DES. Properties set on it will not affect any other request for a page.

Many of its properties can be set by using the PageManager control. See the General Features Guide.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 372 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Properties on PeterBlum.DES.Globals.Page
You generally assign properties to PeterBlum.DES.Globals.Page in your Page_Load() method. Your post back event
handler methods can also assign properties.

 CultureInfo (System.Globalization.CultureInfo) – Cultures define date, time, number and text formatting for a program
to follow. DES uses this value within its data types (PeterBlum.DES.DESTypeConverter classes) as it translates between
strings and values. For example, the Date data type uses this to get the DateTimeFormatInfo class, which defines the
short date pattern (ex: MM/dd/yyyy) and date separator. The Currency data types use the NumberFormatInfo class to get
the currency symbol, decimal symbol, and number of decimal places.

The CultureInfo property uses CultureInfo.CurrentCulture by default. This value is determined by the web server’s .Net
settings, the web.config’s <globalization> tag, or the <% @Page %> tag with the Culture property.

Web.Config setting – Affects the entire site
<globalization Culture="en-US" [other properties] />

Page Setting – Affects a page
<%@Page Culture="en-US" [other page properties] %>

You can set it programmatically in your Page_Load() method or in the Application_BeginRequest()
method of Global.asax. Use the .Net Framework method CultureInfo.CreateSpecificCulture(). For
example, assigning the US culture looks like this:

PeterBlum.DES.Globals.Page.CultureInfo =
 CultureInfo.CreateSpecificCulture("en-US")

Changing the properties of CultureInfo programmatically

Assign values to PeterBlum.DES.Globals.Page.CultureInfo. Here are some examples:

 [C#]

System.Globalization.DateTimeFormatInfo vDTFI =
 PeterBlum.DES.Globals.Page.CultureInfo.DateTimeFormat;
vDTFI.ShortDatePattern = "MM-dd-yyyy";
vDTFI.DateSeparator = "-";
vDTFI.ShortTimePattern = "HH:mm";
vDTFI.LongTimePattern = "HH:mm:ss";

System.Globalization.NumberFormatInfo vNFI =
 PeterBlum.DES.Globals.CultureInfo.NumberFormat;
vNFI.DecimalSeparator = ".";
vNFI.CurrencySymbol = "€";

 [VB]

Dim vDTFI As System.Globalization.DateTimeFormatInfo = _
 PeterBlum.DES.Globals.Page.CultureInfo.DateTimeFormat
vDTFI.ShortDatePattern = "MM-dd-yyyy"
vDTFI.DateSeparator = "-"
vDTFI.ShortTimePattern = "HH:mm"
vDTFI.LongTimePattern = "HH:mm:ss"

Dim vNFI As System.Globalization.NumberFormatInfo = _
 PeterBlum.DES.Globals.CultureInfo.NumberFormat
vNFI.DecimalSeparator = "."
vNFI.CurrencySymbol = "€"

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemglobalizationcultureinfoclasstopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemglobalizationdatetimeformatinfoclasstopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemglobalizationnumberformatinfoclasstopic.asp�
http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.currentculture(vs.71).aspx�
http://msdn2.microsoft.com/en-us/library/ydy4x04a(vs.71).aspx�
http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.createspecificculture(vs.71).aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 373 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 Browser (PeterBlum.DES.TrueBrowser) – Detects the actual browser that is requesting the page and configures the
HTML and JavaScript code returned to work with that browser. If the browser doesn’t support the client-side scripting
code, the TrueBrowser.SupportsClientSideValidators property is false and it automatically sets all Validator
controls EnableClientScript property to false at runtime. See “Browser Support” in the General Features Guide.

 InitialFocusControl (System.Web.UI.Control) – Sets the focus on the page to this control when the page is first loaded.
Assign this property to a reference to the control that should get the initial focus. If the control is hidden or disabled,
focus will not be set because browsers do not permit it.

Typically this is set within Page_Load() or a post back event handler.

When null/nothing, no field gets initial focus. It defaults to null/nothing.

Example

Set focus to a textbox associated with TextBox1:

[C#]

PeterBlum.DES.Globals.Page.InitialFocusControl = TextBox1;

[VB]

PeterBlum.DES.Globals.Page.InitialFocusControl = TextBox1

 JavaScriptEnabled (Boolean) – Determines if the browser really has JavaScript enabled. It automatically detects if
JavaScript is enabled after the first post back for a session. Prior to that first post back, it is true. After that, it is true
when JavaScript is enabled and false when it is not.

When false, the page will be generated as if the browser does not support JavaScript. No controls will output
JavaScript and may draw themselves differently, knowing that a client-side only feature that doesn’t work is
inappropriate to output. The server side will handle these controls gracefully on post back.

This feature stores its state in the Session collection. If the Session is not working or has been cleared, it will reset to
true and attempt to resolve the JavaScript state on the next post back.

If you do not want this detection feature enabled, set DetectJavaScript to false.

You can set this value directly in Page_Load(). It lets you turn off all of DES’s JavaScript features on demand. For
example, your customers can identify if they use JavaScript on their browser in a configuration screen. It only affects the
current page so set it on each page where needed.

 DetectJavaScript (Boolean) – When true, the JavaScriptEnabled property will monitor for JavaScript support. When
false, it will not. It defaults to the global DefaultDetectJavaScript property, which defaults to true. You set
DefaultDetectJavaScript with the Global Settings Editor.

 IsPostBack (Boolean) - DES behaves differently depending on the state of the Page.IsPostBack property. Sometimes
users need to control this behavior. This property reflects the current state of Page.IsPostBack. However, the user can
change its value, either to false (not postback) or to true (postback). Here are features that use this property:

o The ValidationSummary control only shows up when this is true.

o The Validator’s NoErrorFormatter.Mode property.

o PeterBlum.DES.Globals.Page.ShowAlertOnSubmit uses this to build an alert that appears after postback.

o PeterBlum.DES.Globals.Page.FocusOnSubmit can sets the focus after post back.

o The <form onreset=> code varies based on this.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 374 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 Validators (PeterBlum.DES.ValidatorCollection) – A collection of the Validators on this page. Available for page
developers to iterate through as they need to review and modify settings. All validator objects returned are subclassed
from PeterBlum.DES.BaseAnyValidator.

Example

[C#]

foreach (PeterBlum.DES.BaseAnyValidator vValidator in
 PeterBlum.DES.Globals.Page.Validators)
{
 // do something with vValidator
 // remember to typecast to the actual validator class
 // to edit properties specific to that class
}

[VB]

Dim vValidator As PeterBlum.DES.BaseAnyValidator
For Each vValidator In PeterBlum.DES.Globals.Page.Validators

 ' do something with vValidator
 ' remember to typecast to the actual validator class
 ' to edit properties specific to that class
Next

 AutoDisableValidators (Boolean) – Validators normally evaluate controls that are hidden or disabled, unless you use
their Enabler property with the VisibleCondition and/or EnabledCondition. This is excessive work for something that is
pretty common: not validating hidden/disabled controls.

AutoDisableValidators makes validators detect if any of the controls they evaluate are hidden or disabled and turns the
validator off.

When true, validators will not attempt to evaluate controls that are hidden or disabled.

When false, they will unless you establish the Enabler property with a VisibleCondition and EnabledCondition.

When not edited on your page, it uses the global setting DefaultAutoDisableValidators, which defaults to true.

 AutoHideRequiredFieldMarker (Boolean) – When a validator's ShowRequiredFieldMarker property is true and it
has an Enabler, set AutoHideRequiredFieldMarkers to true to hide the RequiredFieldMarker any time the validator
is disabled.

If you feel that the RequiredFieldMarker does not belong when the validator is disabled, use this feature. Not every
client-side action that modifies what the Enabler is evaluating will trigger the RFM to be hidden. FieldStateControllers
and user edits to those controls will properly hide them. For any other scripts you use to modify those controls, call this
function:

DES_UpdateRFM();

When not assigned, it uses the global setting DefaultAutoHideRequiredFieldMarkers, which defaults to false.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 375 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 SetFocusFunctionName (string) – The name of a client-side function that is called whenever DES attempts to set focus
to a field with an error. Use this function when the field is invisible and you want to show it. For example, if your fields
are in a tabbed user interface, a field with the error is invisible when on a tabbed panel that is not visible. Your function
can entirely replace the built in focus setting code. For example, if the field is a RichTextBox and it has a specialized
JavaScript function to select the entire text when setting focus, use this.

The function must take one parameter, the element that is getting the focus. It is an object, defined in DOM/DHTML,
such as the <input> tag for a textbox. One key property of every element is its 'id'. Use that to determine the element
so you know what you are attempting to act on.

The function must return a Boolean value where true means set focus and false means do not set focus. When you
replace the focus setting code with your own, return false.

It defaults to "".

Your function should appear on the page that is generated. See “Adding Your JavaScript to the Page”.

In this example, the parent of element id ‘TextBox1’ may be invisible. This JavaScript code makes it visible and returns
true to indicate that it can set focus. PeterBlum.DES.Globals.Page.SetFocusFunctionName is set to "ShowTextBox1".

function ShowTextBox1(pFld)
{
 if (pFld.id == 'TextBox1')
 pFld.parentNode.style.visibility = 'inherit';
 return true;
}

 EnableButtonImageEffects (enum PeterBlum.DES.EnableButtonImageEffects) – Many buttons can show up to 3
images: normal, pressed, and mouseover. By default, these effects are set up based on the presence of the actual files.
However, DES cannot always see the files are present. For example, the URL uses http://.
EnableButtonImageEffects lets you to specify that the images are present or not.

The enumerated type has these values:

o None - Never use image effects.

o Always - Always use image effects. Assume that all image files are available

o Auto - Detect the files, if possible before using them

o Pressed - Always set up for pressed. Never set up for mouse over

o MouseOver - Always set up for mouseover. Never set up for pressed

It defaults to EnableButtonImageEffects.Auto.

 PageIsLoadingMsg (string) – The error message to display on the client-side if the user interacts with this control
before it is initialized. It defaults to “Page is loading. Please wait.”.

 FocusOnChange, FocusOnSubmit, FocusAfterAlert – See “Set Focus to the Control”.

 ShowAlertOnChange, ShowAlertOnSubmit, AlertTemplate, AlertTemplateLookupID, AlertTemplateLeadText,
AlertTemplateListStyle – See “Show an Alert”.

 ChangeStyleOnControlsWithError, ControlErrorCssClass, ListErrorCssClass, CheckBoxErrorCssClass,
CheckBoxECCMode – See “Change the Style of the Field With the Error”.

 HiliteFieldsNearbyError, TextHiliteFieldCssClass, NonTextHiliteFieldCssClass – See “Change the Style of Other
Fields Nearby the Error”.

 BlinkOnChange, BlinkOnSubmit, BlinkTime – See “Blinking the ErrorFormatter”.

 WarningsConfirmOnSubmit, WarningsConfirmTemplate, WarningsConfirmTemplateID,
WarningsConfirmLeadText – See “Confirm when Warnings are shown”.

 LabelTokenCssClass, PropertyTokenCssClass, RuntimeTokenCssClass, SummaryLabelTokenCssClass,
SummaryPropertyTokenCssClass, SummaryRuntimeTokenCssClass – See “Applying Styles To Tokens”.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 376 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

 IsValid, HasValidated – See “Properties and Methods to Validate the Page”.

 ConfirmMessage, ConfirmMessageLookupID, ConfirmMessageGroup, CustomSubmitFunctionName,
SubmitOrder, PostValidationUpdateScript, DefaultGroup – See “Page-Level Properties used by Client-Side
Validation”.

 UseOnResetEventHandler – See “Supporting a Reset or Clear Button”.

 SubmitPageManager – Provides methods to programmatically attach native submit controls to DES. See these topics:

o Using Native Button Controls to Submit the Page

o Using the Menu Control to Validate the Page

o Using the BulletedList Control

o Using AJAX Callback Controls

 BeforeValidation (event) – This event is fired first when the DESPage.Validate() methods are called. Use it to do
any preparation for server side validation. It uses the System.EventHandler delegate definition, where pSender is
the DESPage object.

Example

[C#]

public void Page_Load(object pSender, EventArgs pE)
{
 PeterBlum.DES.Globals.Page.BeforeValidation +=
 new EventHandler(DESPage_BeforeValidation);
}

public void DESPage_BeforeValidation(object pSender, EventArgs pE)
{
 // your code goes here
}

[VB]

Public Sub Page_Load(ByVal pSender As Object, ByVal pE As EventArgs)
 AddHandler PeterBlum.DES.Globals.Page.BeforeValidation _
 AddressOf DESPage_BeforeValidation
End Sub

Public Sub DESPage_BeforeValidation(ByVal pSender As Object, _
 ByVal pE As EventArgs)
 ' your code goes here
End Sub

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 377 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Debugging PeterBlum.DES.Globals.Page Properties
If you are uncertain that the values set in PeterBlum.DES.Globals.Page are correct, use the
PeterBlum.DES.Globals.Page.DescribeProperties() method. It returns a string that you can assign to a
Label or LiteralControl control to show on the page or you can set up <@ Page Trace="true" > and output them using
Page.Trace.Write().

PeterBlum.DES.Globals.Page.DescribeProperties(showHTML)

showHTML

Pass true to format the text in HTML format (as a table) and false to format it as a carriage return delimited set of
lines useful to output to a file or other system that cannot use HTML.

Call it after you have set any properties on PeterBlum.DES.Globals.Page, like this.

DebugLabel1.Text = PeterBlum.DES.Globals.Page.DescribeProperties(true)

Page.Trace.Write(PeterBlum.DES.Globals.Page.DescribeProperties(false))

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 378 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Methods on PeterBlum.DES.Globals.Page
Click on any of these topics to jump to them:

 PeterBlum.DES.Globals.Page.Validate() method

 PeterBlum.DES.Globals.Page.EnableValidators() method

 PeterBlum.DES.Globals.Page.EnableClientScriptValidators() method

 PeterBlum.DES.Globals.Page.GetPostBackEventReference method

 PeterBlum.DES.Globals.Page.GetPostBackClientHyperlink method

 PeterBlum.DES.Globals.Page.GetValidationGroupScript Method

PeterBlum.DES.Globals.Page.EnableValidators() method
PeterBlum.DES.Globals.Page provides the EnableValidators() method to set the Enabled property on a group of
Validators. EnableValidates() iterates through all of the Validators which match the pGroup parameter and set their Enabled
property to the value of the pEnabled parameter. It does not return a result.

[C#]

public void EnableValidators(string pGroup, bool pEnabled)

[VB]

Public Sub EnableValidators(ByVal pGroup As String, ByVal pEnabled As Boolean)

In this example, Validators are disabled if their group name is "".

[C#]

PeterBlum.DES.Globals.Page.EnableValidators("", false);

[VB]

PeterBlum.DES.Globals.Page.EnableValidators("", False)

PeterBlum.DES.Globals.Page.EnableClientScriptValidators() method
PeterBlum.DES.Globals.Page provides the EnableClientScriptValidators() method to set the
EnableClientScript property on a group of Validators. EnableClientScriptValidates() iterates through all of the
Validators which match the pGroup parameter and set their EnableClientScript property to the value of the pEnabled
parameter. It does not return a result.

[C#]

public void EnableClientScriptValidators(string pGroup, bool pEnabled)

[VB]

Public Sub EnableClientScriptValidators(ByVal pGroup As String,
 ByVal pEnabled As Boolean)

In this example, client-side validation for Validators are disabled if their group name is "".

[C#]

PeterBlum.DES.Globals.Page.EnableClientScriptValidators("", false);

[VB]

PeterBlum.DES.Globals.Page.EnableClientScriptValidators("", False)

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 379 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

JavaScript Support Functions
This section shows how to communicate with these controls from your own JavaScript.

DES supplies the following client-side functions to any page that includes these controls.

Click on any of these topics to jump to them:

 General Utilities

 Validation Functions

General Utilities

function DES_GetById(pID)

Returns the DHTML element associated with the ID supplied. This is a wrapper around the functions document.all[]
and document.GetElementById() so that you can get the field using browser independent code.

Parameters

pID

The ClientID property value from the server side control. It is the value written into the id= attribute of the HTML
element. See “Embedding the ClientID into your Script”.

Return value

Returns the field object or null.

Example

var vOtherField = DES_GetById('DateTextBox1');

function DES_ParseInt(pText)

It converts it into an integer number and returns the number. While the JavaScript parseInt() function is supposed to do
this, when there is a lead zero, parseInt() believes the number is octal (base 8). Thus, 08 is returned as 10. Dates often
have lead zeros. So call this instead of parseInt(). Internally, it calls parseInt() after stripping off the lead zeroes.

Parameters

pText

The string to convert to an integer.

Return value

An integer. If the text represented a decimal value, it will return the integer portion. If it cannot be converted, it returns NaN
which you can detect with the JavaScript function isNaN(value).

Example

var vNumber = DES_ParseInt("03"); // returns 3
if (!isNaN(vNumber))
 // do something with vNumber

http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Functions:parseInt�
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Functions:parseInt�
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Functions:parseInt�
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Functions:isNaN�
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Functions:isNaN�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 380 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

function DES_SetFocus(pID)

Sets focus to the HTML element whose ID is passed in. It will not set focus if the element is not present or it’s illegal to set
focus (such as its invisible). It will also select the contents of a textbox, if the ID is to a textbox.

It calls your custom focus function defined in PeterBlum.DES.Globals.Page.SetFocusFunctionName to assist it to setting
focus. (See “Properties on PeterBlum.DES.Globals.Page” in the General Features Guide.)

Parameters

pID

The ClientID property value from the server side control. It is the value written into the id= attribute of the HTML
element. See “Embedding the ClientID into your Script”.

Return value

Returns the field object or null.

Example

DES_SetFocus('DateTextBox1');

function DES_Round(pValue, pMode, pDecimalPlaces)

Rounds a decimal value in several ways.

Parameters

pValue

The initial decimal value.

pMode

An integer representing one of the rounding modes:

0 = Truncate – Drop the decimals after pDecimalPlaces

1 = Currency – Round to the nearest even number

2 = Point5 – Round to the next number if .5 or higher; round down otherwise

3 = Ceiling – Returns the smallest integer greater than or equal to a number. When it’s a negative number, it will
return the number closest to zero.

4 = NextWhole - Returns the smallest integer greater than or equal to a number. When it’s a negative number, it will
return the number farthest from zero.

pDecimalPlaces

The number of decimal places to preserve. For example, when 2, it rounds based on the digits after the 2nd decimal
place.

Return value

Returns the rounded decimal value.

Example

var PI = 3.14159;
var vResult = DES_Round(PI, 0, 0); // Truncate: returns 3
vResult = DES_Round(PI, 1, 2); // Currency: returns 3.14
vResult = DES_Round(PI, 3, 0); // Ceiling: returns 4

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 381 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

function DES_Trunc(pValue)

Returns the integer part of the decimal value. Converts the type from float to integer.

Parameters

pValue

The initial decimal value.

Return value

Returns the integer part of the decimal value. Converts the type from float to integer.

Example

var PI = 3.14159;
var vResult = DES_Trunc(PI); // returns 3

function DES_SetInnerHTML(pField, pHTML)

A browser independent way to update the inner HTML of a tag. Usually you will define a tag with an ID. The inner
HTML of that tag will be updated. A System.Web.UI.WebControls.Label creates such a tag and its
ClientID is the ID to find the tag on the page.

Parameters

pField

The DHTML element for the HTML table. Use DES_GetById() to convert a ClientID into an DHTML element.
See “Embedding the ClientID into your Script”.

pHTML

The inner HTML.

Example

DES_SetInnerHTML(DES_GetById('Label1'), 'New Text');

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 382 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Retrieving Values From Data Entry Controls

function DES_GetTextValue(pID, pTrim, pEvalFunction)

Retrieves the textual value of a control.

Parameters

pID

The ClientID property value from the server side control. It is the value written into the id= attribute of the HTML
element. See “Embedding the ClientID into your Script”.

pTrim (Boolean)

When true, strip off leading and trailing spaces.

pEvalFunction (function)

Optional parameter. Can be omitted or pass null. When evaluating a client-side condition object, this provides a
custom function for a control to retrieve its current value. When not assigned, the value comes from the value=
attribute on the HTML tag that uses pID, such as <input type='text' id='textbox1' value='current text' />.

Pass the condition object’s GetText property when writing a custom evaluation function. See the example below.

Return value

A string which is the current value of the control.

Example 1

var vVal = DES_GetTextValue("TextBox1", true);

Example 2: Using a Condition object

var vVal = DES_GetTextValue(cond.IDToEval, cond.Trim, cond.GetText);

function DES_GetSelIdx(pID, pEvalFunction)

Retrieves the index of a list or DropDownList control.

Parameters

pID

The ClientID property value from the server side control. It is the value written into the id= attribute of the HTML
element. See “Embedding the ClientID into your Script”.

pEvalFunction (function)

Optional parameter. Can be omitted or pass null. When evaluating a client-side condition object, this provides a
custom function for a control to retrieve its current value. When not assigned, the value comes from the value=
attribute on the HTML tag that uses pID, such as <select id='listbox1' value='current text' />.

Pass the condition object’s GetSelIdx property when writing a custom evaluation function. See the example below.

Return value

It returns an integer with one of these values: -1 for no selection, 0 for the first element selected, etc.

Example 1

var vVal = DES_GetSelIdx("ListBox1");

Example 2: Using a Condition object

var vVal = DES_GetSelIdx(cond.IDToEval, cond.GetSelIdx);

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 383 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

function DES_GetDTTBValue(pID)

Supports Date, Time, Duration, Integer, Decimal, Currency and Percent TextBoxes.

Retrieve the value of the numeric, date or time textbox. The “DTTB” stands for “DataTypeTextBox”.

Parameters

pID

The ClientID property value from the server side control. It is the value written into the id= attribute of the HTML
element. See “Embedding the ClientID into your Script”.

Return value

IntegerTextBox Integer or null for invalid entry.

DecimalTextBox,
CurrencyTextBox,
PercentTextBox

Floating point or null for invalid entry.

DateTextBox,
AnniversaryTextBox,
MonthYearTextBox

JavaScript Date object or null for invalid entry.

TimeOfDayTextBox,
DurationTextBox

Integer representing a number of seconds since 0:0:00 or null for invalid entry.

Example

var vNumber = DES_GetDTTBValue('IntegerTextBox1');
if (vNumber != null)
 // do something with vNumber

http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Objects:Date�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 384 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Validation Functions

function DES_FieldChanged(pID)

Runs client-side validation on the control using the DES Validation Framework. It runs all Validators attached to the control.

Parameters

pID

The ClientID property value from the server side control. It is the value written into the id= attribute of the HTML
element. See “Embedding the ClientID into your Script”.

Example

DES_FieldChanged('TextBox1');

function DES_IsValid(pID)

Determines if the data entry control (textbox, list, etc) is valid using the DES Validation Framework. It does NOT run
validation. It merely returns the state from the most recent validation. It does NOT evaluate a single validator either. It is
looking at the validation state of the data entry control.

Parameters

pID

The ClientID property value from the server side data entry control that has validators assigned to it. It is the value
written into the id= attribute of the HTML element. See “Embedding the ClientID into your Script”.

Return value

Returns true if all validators on the data entry control are valid.

Returns false if at least one validator on the data entry control is invalid.

Returns null if the data entry control has no client-side validators attached or they are all disabled.

Example

if (DES_IsValid('<% =TextBox1.ClientID %>') == false)
 // take an action when the control is invalid

function DES_ValidateGroup(pGroup)

Runs client-side validation on the control using the DES Validation Framework. It runs all Validators attached to the control.

Parameters

pGroup

The Validation Group name. Can be "". Pass "*" to validate every enabled validator regardless of the group.

Return value

True when all validators are valid. False otherwise.

Example

DES_ValidateGroup('');

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 385 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

function DES_FindAOById(pID)

Returns the “Action object” for a validator. The Action object represents the validator on the client-side. Use it to modify the
state of the validator usually by following these directions: “Changing The Properties of a Validator With Client-Side
Scripts”.

Parameters

pID

The ClientID property value from the server side control. It is the value written into the id= attribute of the HTML
element. See “Embedding the ClientID into your Script”.

Return value

The Action object (a javascript object) for the validator, or null if the ID cannot be found.

Example

var vAO = DES_FindAOById("<% = RequiredTextValidator1.ClientID %>");
if (vAO)
 vAO.Enabled = false;

function DES_SetEnabled(pAO, pEnabled)

Changes the enabled state of a validator. If the validator is disabled, any associated error message is hidden.

Recommendation: Use the validator’s Enabler property if possible.

Parameters

pAO

The “Action Object” for the validator. See “Changing The Properties of a Validator With Client-Side Scripts”.

pEnabled

When true, enable the validator. When false, disable the validator.

Example

var vAO = DES_FindAOById("<% = RequiredTextValidator1.ClientID %>");
DES_SetEnabled(vAO, false);

function DES_HideVal(pAO)

Hides the validator (effectively sets it to being valid). It does not modify or use any of the “Drawing The User’s Attention To
The Error” features. If you need them to be changed, use DES_UpdVal().

Parameters

pAO

The “Action Object” for the validator. See “Changing The Properties of a Validator With Client-Side Scripts”.

Example

var vAO = DES_FindAOById("<% = RequiredTextValidator1.ClientID %>");
DES_HideVal(vAO);

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 386 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

function DES_UpdVal(pID, pCondResult, pErrMsg, pSumErrMsg)

Modifies the state of the validator. Adjusts the Condition Result (which is how to specify valid or invalid) and both error
messages. You can pass null into the last 3 parameters to avoid modifying them.

Parameters

pID

The ClientID property value from the server side Validation control. It is the value written into the id= attribute of
the HTML element. See “Embedding the ClientID into your Script”.

pCondResult (integer)

Change the Condition Result. Here are the valid values:

o 1 – Valid

o 0 – Invalid

o -1 – Cannot evaluate

o null – ignore this parameter

pErrMsg

A new error message to show in the ErrorFormatter. It can contain runtime tokens. Pass null to avoid changing the
error message.

pSumErrMsg

A new error message to show in the ValidationSummary control. It can contain runtime tokens. Pass null to avoid
changing the error message.

Example 1

Makes the RequiredFieldValidator1 invalid with new messages.

DES_UpdVal("<% = RequiredTextValidator1.ClientID %>", 0,
 "New error message", "New summary message");

Example 2

Makes the RequiredFieldValidator1 invalid without changing messages.

DES_UpdVal("<% = RequiredTextValidator1.ClientID %>", 0, null, null);

function DES_VALReset(pPostBack)

Restores validators to their original visibility settings from when the HTML was loaded. If the page is new, they will all be
hidden. If there is a postback, you can show their values from immediately after the postback or hide them all, depending on
the pPostBack property.

Note: It only adjusts the IsValid property and control’s visibility. It will not restore any other client-side property.

Parameters

pPostBack

When true, and there has been a postback or callback, restore the validator state to the value set during the
callback or postback. When false or if the page is new, hide the validator.

Example

DES_VALReset(false);

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 387 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Adding Your JavaScript to the Page
Some of DES’s features allow you to write your own JavaScript. When writing JavaScript, you can put it in three places:

 Directly on the page. It is typically placed before the <form> tag. Be sure to enclose it in <script> tags like this:

<script type='text/javascript' language='javascript' >
<!--
add your function code here
// -->
</script>

 In your Page_Load() code using the Page.RegisterClientScriptBlock() method. You must still include
the <script> tags in your code:

[C#]

uses System.Text;
...
protected void Page_Load(object sender, System.EventArgs e)
{
 StringBuilder vScript = new StringBuilder(2000);
 vScript.Append("<script type='text/javascript' language='javascript' >\n");
 vScript.Append("<!-- \n");
 vScript.Append(add your function code here);
 vScript.Append("// -->\n</script>\n");
 RegisterClientScriptBlock("KeyName", vScript.ToString());
}

[VB]

Imports System.Text
...
Protected Sub Page_Load(ByVal sender As object, _
 ByVal e As System.EventArgs)

 Dim vScript As StringBuilder = New StringBuilder(2000)
 vScript.Append("<script type='text/javascript' language='javascript' >")
 vScript.Append("<!-- ")
 vScript.Append(add your function code here)
 vScript.Append("// --></script>")
 RegisterClientScriptBlock("KeyName", vScript.ToString())
End Sub

 In a separate file, dedicated to JavaScript. This file doesn’t need <script> tags. Instead, the page needs
<script src= > tags to load it. The script tags should appear before the <form> tag.

<script type='text/javascript' language='javascript' src='url to the file' />

Embedding the ClientID into your Script
If your scripts are embedded into your web form, you can use this syntax to get the ClientID:

'<% =ControlName.ClientID %>'

For example:

DES_GetById('<% =ControlName.ClientID %>');

If you create the script programmatically, simply embed the ClientID property value. For example:

vScript = "DES_GetById('" + ControlName.ClientID + "');"

http://msdn2.microsoft.com/en-us/library/system.web.ui.page.registerclientscriptblock(vs.71).aspx�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 388 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Debugging Your JavaScript

Using Internet Explorer

You can debug JavaScript in Internet Explorer by using Visual Studio as your debugger. Open the Tools; Internet Options
menu command and select the Advanced tab. Then unmark Disable Script Debugging.

After launching your web page from Visual Studio, switch back to Visual Studio. Then select Debug; Windows; Script
Explorer (or Running Documents in VS2002/3) from the menubar. Double-click on the filename containing the JavaScript
function and set a breakpoint inside the function. Now resume using your browser.

Using FireFox
Use the FireBug debugger for FireFox. Get it here:
https://addons.mozilla.org/en-US/firefox/addon/1843

https://addons.mozilla.org/en-US/firefox/addon/1843�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 389 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Troubleshooting
Here are some issues that you may run into. Remember that technical support is available from support@PeterBlum.com. We
encourage you to use this knowledge base first.

This guide contains problems specific to the DES Validation Framework. Please see the “Troubleshooting” section of the
General Features Guide for an extensive list of other topics including “Handling JavaScript Errors” and “Common Error
Messages”.

A great tool is this report: Analyzing the Page’s Validation configuration.

Runtime Problems
Also see the “Troubleshooting” section of the General Features Guide.

When you submit a page, validation doesn’t run on the server side

A great tool is this report: Analyzing the Page’s Validation configuration.

1. The method PeterBlum.DES.Globals.Page.Validate() is not called. It is called automatically from inside a
DES button's Click event if CausesValidation=true. It won't happen on a non-DES button unless you attach the
NativeControlExtender to the button or use the
PeterBlum.DES.Globals.Page.SubmitPageManager.RegisterSubmitControl() method. It won't
happen when CausesValidation=false.

When it does not happen automatically, call it within the postback event handler method before saving or using the data.

2. You are not testing PeterBlum.DES.Globals.Page.IsValid=true inside your post back event handler where you
attempt to save the data. You must test IsValid either on the DESPage or individual Validator objects to determine if the
page is valid. Do this in your postback event handler method before saving or using the data.

3. The validators are disabled, either through the Enabled or Enabler properties.

4. The validation group name in the Group property does not match between the button and the validators. See “Validation
Groups”.

For an overview, see “Submitting the Page: Server-Side Validation”.

When you submit a page, validation doesn’t run on the client side

A great tool is this report: Analyzing the Page’s Validation configuration.

Any control that submits the page must be set up to run DES’s client-side code that validates upon submission. If you are
using DES’s submit buttons, this is built in. See “DES’s Button, LinkButton, and ImageButton Controls”. Otherwise, please
consider these types of controls that submit the page:

 Native buttons. See “Using Native Button Controls to Submit the Page”.

 Buttons in a GridView or DataGrid. See “DES’s Submit Controls For The GridView and DetailsView” or “DES’s
Submit Controls For The DataGrid”.

 The AutoPostBack property on a WebControl. See “Using Validation with AutoPostBack”.

Additionally, here are several reasons why client-side validation doesn’t occur:

 The validation group assigned to the submit control does not match any validators.

 The Validator has its EnableClientScript property set to false.

 The Validator has its EventsThatValidate property set to OnChange.

 The browser doesn’t support client-side validation.

 The user has disabled JavaScript on the browser.

 There is a JavaScript error on the page. Please see the “Handling JavaScript Errors” topic in the “Troubleshooting”
section of the General Features Guide.

mailto:support@PeterBlum.com�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 390 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

The button’s Click or Command event doesn’t run

DES’s Button, LinkButton, and ImageButton will call their Click and Command event when they are the control that
submits the page. You can override this behavior by setting their SkipPostBackEventsWhenInvalid property to
TrueFalseDefault.True. In that case, when the button detects a validation error, it will skip the Click and Command
event. Change the SkipPostBackEventsWhenInvalid property to TrueFalseDefault.False to always call these
events.

The Validators and FieldStateControllers don’t run on the client-side

There are a number of settings that can disable the Validator controls. See “Changing When the Validator is Evaluated” for
properties on the Validator controls, and “Browser Support” in the General Features Guide for browsers affecting the
client-side.

Additionally, the scripting may not be properly set up. Please see the “Handling JavaScript Errors” topic in the
“Troubleshooting” section of the General Features Guide.

Finally, if the page is called from Server.Transfer(), you must add some code to the original and destination pages.
See “Using Server.Transfer” in the General Features Guide.

I am using Page.Validate() or Page.IsValid. These don’t work

You are using methods from the Native Validation Framework. The DES Validation Framework does not use the
Page.IsValid property or Page.Validate() method. DES supplies matching properties and methods:
PeterBlum.DES.Globals.Page.IsValid and PeterBlum.DES.Globals.Page.Validate(). See “Submitting the
Page: Server-Side Validation”.

Validator controls do not have the correct styles

By default, Validator controls should have a red font. This comes from a style sheet that you must link to each page. Most
likely, you forgot to establish the style sheet. See “Using Style Sheets” in the General Features Guide.

Validator error messages do not show in the ValidationSummary

Consider the following:

 You are using a Native Validation Framework Validator control instead of a DES Validation Framework Validator
control. Native controls have an <asp:classname > tag and the namespace System.Web.UI.WebControls.

 The ValidationSummary from the Native Validation Framework.

To quickly convert to DES Validation Framework controls, see run the Web Application Updater program with the
option Convert native controls to their DES equivalents. If you have a Validator control that doesn’t come with the
ASP.NET controls from Microsoft, you will need to create an equivalent control using DES’s classes.

After selecting an item from an AutoComplete popup in IE, it doesn’t validate

Internet Explorer popups up little windows called “AutoComplete” on textboxes. When you select from the autocomplete,
Internet Explorer does not fire the textbox’s onchange event that DES uses to validate when the user changes a field. This
was tested in IE for Windows v6.0.28.

When the user submits the page, it will still detect and report a validation error.

Solution: Use one the TextBox classes supplied with DES. They have a feature to avoid this problem. See the TextBoxes
User’s Guide.

Validation causes the page to move elements. However, absolutely positioned elements don’t move and
appear out of place

Client-side validation adds and removes elements on the page. This causes the browser to move other elements on the page to
fit the validation error message or ValidationSummary. If you have absolutely positioned elements on the page that are
carefully positioned next to non-absolutely positioned elements, the non-absolutely position element may move. But the
browser will not move the absolutely position element. That’s the design of absolutely positioned elements.

To fix this, use the PeterBlum.DES.Globals.Page.PostValidationUpdateScript property to call JavaScript that updates the
positions of absolutely positioned elements on the page.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 391 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

If you are using a third party control, contact the developer for any available JavaScript code they have to handle this case.

The user needs to click twice on the button to submit the page

This happens when focus is in a data entry control that was just edited to correct a problem and the user clicks on the button.

The problem is that the button control moves between the moment you click the mouse on it and when it’s ready to run its
DHTML onclick event. The reason is that before the button's onclick event runs, a validator runs its validation due to the
DHTML onchange event of the associated data entry control. When it does this, the screen has been rearranged to hide its
error message, causing the button to move. The browser will not run the button's DHTML onclick event if the mouse is
pulled off the button and due to it moving, that's exactly what's happening.

Here are the solutions:

 If you are using DES’s Button, LinkButton, or ImageButton control, set the MayMoveOnClick property to true.
If you are using the Microsoft Button or ImageButton controls, switch them to DES’s and use that property.

 Otherwise, make sure your button is not able to relocate in this situation. It may take repositioning it or restructuring
something about your page so it doesn't cause a repositioning. For example, use the
validator.ErrorFormatter.Display = Static value (which gives a fixed size for the error message) or move the
ValidationSummary the button.

When several error messages are overlayed by using the Display=Dynamic setting, they do not align

Suppose you have two Validators to the right of a textbox, a RequiredTextValidator and CompareToValueValidator. Each is
set to Display=Dynamic. Only one will show at a time. When one appears, it does not start at the exact same left coordinate
as the other. Here is a visual representation using an image to better show the problem.

There are two possibilities.

1. If you are using the GapBefore, only use it on the leftmost Validator. The GapBefore is always shown on the page, even
when the error message is hidden.

2. You have a carriage return between the two Validators in the HTML. The browser adds a few pixels where it finds a
carriage return.

Change this:

<des:validator [parameters]>
 [innerparameters]
</des:validator>
<des:validator [parameters]>
 [innerparameters]
</des:validator>

To this:

<des:validator [parameters]>
 [innerparameters]
</des:validator><des:validator [parameters]>
 [innerparameters]
</des:validator>

ValidationSummary does not list validators in the right order

Normally the Validators appear in the order they are in the page's Control tree. Here are two cases that break that rule:

1. You have used absolute positioning to make the validators visually in a different order than they are on the page. Move
their order on the page to be the desired order.

2. If you have an Enabler property set up, make sure its EvaluateOnClickOrChange property is false.

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 392 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

TextBoxes use a yellow background color in IE for Windows

The user has Google Toolbar installed. It modifies the background color of textboxes that don’t have their own style sheet
class assigned.

Enabler, ErrorFormatter, or HiliteFields properties are ignored

Does the validator start with <despval:? If so, the ASP.NET Declarative Syntax does not support these properties.

When you convert native validators to DES, it creates validators with the same class name and properties as the native
validators, but underlying it is the power of a DES validator. <despval: indicates one of these converted validators.

Since any <despval: validator does not allow Enabler, ErrorFormatter, or HiliteFields properties in the ASP.NET
Declarative Syntax, you have these options:

1. Assign the property programmatically, in Page_Load() or if in a control that creates them during databinding, its
ItemCreated or RowCreated event. Be sure to remove the nested property from the ASP.NET Declarative Syntax.

2. Replace the control with the actual DES validator. Start fresh, with no properties assigned. It may be smart to add the
new validator side-by-side, then apply properties to their new names using the Properties Editor.

<despval:RequiredFieldValidator> → <des:RequiredTextValidator>

<despval:CompareValidator Operator=DataTypeCheck> → <des:DataTypeCheck>

<despval:CompareValidator ValueToCompare=value> → <des:CompareToValueValidator>

<despval:CompareValidator ControlToCompare=controlid> →
<des:CompareTwoFieldsValidator>

<despval:RangeValidator> → <des:RangeValidator>

<despval:RegularExpressionValidator> → <des:RegexValidator>

<despval:CustomValidator> → <des:CustomValidator>

Property mappings:

ControlToValidate → ControlIDToEvaluate

Operator=DataTypeCheck - remove it

Type → DataType

ErrorMessage stays the same unless you also have a Text property. In that case, Text becomes ErrorMessage and
ErrorMessage becomes SummaryErrorMessage

ControlToCompare → SecondControlIDToEvaluate

ValidationExpression → Expression

For the CustomValidator, the client and server side functions are different. You will need to recreate them. Yet it may be
possible to create the same logic with other DES validators.

DropDownLists reporting a JavaScript error in Google Chrome 1

When a DropDownList has AutoPostBack set to true and you assign a DES validator to that DropDownList, Google
Chrome v1 will generate a JavaScript error. Use the NativeControlExtender to avoid this. Add it to any DropDownList whose
AutoPostBack property is set to true and has validators.

Internally the NativeControlExtender swaps the original AutoPostBack scripts with alternatives that work with all browsers.

Javascript expressions don’t consistently work

When using the RegexValidator, there are two regular expression parsers at work. During client-side validation, the
Javascript RegExp class engine is used. During server-side validation, the .net Regex class engine is used. .net’s engine has
more features. When writing regular expressions, if you intend them to work on the client side, always design your
expression to work with the JavaScript RegExp class engine.

JavaScript RegExp class guide

https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/RegExp�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 393 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

JavaScript regular expression testing tool – Set Select Regex Engine to “Client-side Engine” and Engine (at the bottom
of the Regex Input box) to “JavaScript”.

Internet Explorer has a few reported bugs in its engine that you should be aware of. They are described in this post:

“A JScript/VBScript Regex Lookahead Bug” by Steven Levithan

http://regexlib.com/RETester.aspx?engine=JavaScript�
http://blog.stevenlevithan.com/archives/regex-lookahead-bug�

Peter’s Professional Validation a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 394 of 394
http://www.PeterBlum.com For technical support and other assistance, see page 11

Design Mode Problems
Also see the “Troubleshooting” section of the General Features Guide.

Validator controls have the wrong or missing properties in the Properties Editor

You are probably looking at one of Microsoft’s Validator Controls or a Validator subclassed from
System.Web.UI.WebControls.BaseValidator. You need to convert it to a DES control.

If the ErrorFormatter property is missing but others are present, you are looking at a “Microsoft-style” DES Validator
created by the Web Application Updater program when it converted native controls to their DES equivalents. Unless you
need the ErrorFormatter property, you can continue to use it, as it is fully DES compatible. If you need the
ErrorFormatter property, you will need to replace the control with the desired DES Validator control.

	License Information
	Platform Support
	Technical Support and Other Assistance
	What does Peter’s Data Entry Suite Do?
	Overview of the DES Validation Framework
	Client-Side Validation Support
	Supported Data Entry Controls
	Evaluating Conditions
	Determining When Validators Fire
	Error Messages
	Showing Errors
	ValidationSummary Control
	Showing the “Required Field” Marker
	Submitting The Page
	The String Lookup System
	Support for the Native Validation Framework
	Support for Third Party Products

	Adding Validation to a WebForm
	Big Picture
	Step-by-Step

	Validator Controls
	About Conditions
	RequiredTextValidator
	RequiredListValidator
	DataTypeCheckValidator
	CompareToValueValidator
	CompareTwoFieldsValidator
	RangeValidator
	RegexValidator
	CheckStateValidator
	SelectedIndexValidator
	TextLengthValidator
	EmailAddressValidator
	MultipleRequiredControlsValidator
	RequiredSelectionValidator
	CharacterValidator
	CompareToStringsValidator
	WordCountValidator
	DifferenceValidator
	CountSelectionsValidator
	DuplicateEntryValidator
	UnwantedWordsValidator
	SelectedIndexRangesValidator
	ListSizeValidator
	CreditCardNumberValidator
	ABARoutingNumberValidator
	CountTrueConditionsValidator
	MultiConditionValidator
	CustomValidator
	IgnoreConditionValidator
	Non-Data Entry Conditions
	Extending Existing Validators and Conditions
	Defining the Error Message and Associated Labels
	ErrorFormatters: Customizing the Appearance of the Error Message
	Properties for the PeterBlum.DES.ErrorFormatterPopupView Class
	Other Validator Properties that Customize the Appearance
	Drawing The User’s Attention To The Error
	Changing When the Validator is Evaluated
	Other Properties
	Submitting the Page: Server-Side Validation
	Submitting the Page: Client-Side Validation

	Additional Validation Topics
	Validation Best Practices
	Using the DES Validation Framework With Each ASP.NET Web Control
	Using Validators with Third Party Controls
	Analyzing the Page’s Validation configuration
	Supporting a Reset or Clear Button
	The ViewState and Preserving Properties for PostBack
	Validation and the PostBackUrl Property
	Running Validation With Client-Side Scripts
	Changing The Properties of a Validator With Client-Side Scripts
	Adding Client-Side Validation Scripts Within Your Server Side Code

	ValidationSummary Control
	Features
	Using ValidationSummary Control
	Adding a ValidationSummary Control
	Properties of the ValidationSummary Control
	HTML Structure of the ValidationSummary Control

	CombinedErrorMessages Control
	Using the CombinedErrorMessages Control
	Adding the CombinedErrorMessages Control
	Properties for the CombinedErrorMessages Control

	Required Field Marker Controls
	RequiredFieldMarker Control
	RequiredFieldsDescription Control
	Setting up the Global Defaults
	Adding a RequiredFieldMarker Control
	Properties of the RequiredFieldMarker Control
	Adding a RequiredFieldsDescription Control
	Properties of the RequiredFieldsDescription Control

	Page Level Properties and Methods
	Properties on PeterBlum.DES.Globals.Page
	Debugging PeterBlum.DES.Globals.Page Properties
	Methods on PeterBlum.DES.Globals.Page

	JavaScript Support Functions
	General Utilities
	Retrieving Values From Data Entry Controls
	Validation Functions

	Adding Your JavaScript to the Page
	Embedding the ClientID into your Script
	Debugging Your JavaScript

	Troubleshooting
	Runtime Problems
	Design Mode Problems

	Word Bookmarks
	OLE_LINK1
	TableOfContents
	DevelopersKit
	Validators_Adding
	AboutConditions
	CommonCondition_Properties
	ControlIDToEvaluate
	ControlToEvaluate
	Val_ReportErrorsAfter
	ExtraControlsToRunThisAction
	DTC_MinimumAsNative
	DTC_MaximumAsNative
	Comp2Vl_ValueToCompare
	Comp2Vl_ValueToCompareAsNative
	Range_MinimumAsNative
	Range_MaximumAsNative
	AddBrandMethod
	ConditionTwoFieldEventArgs
	JavaScriptInfo
	OverrideClientSideEvaluation
	ErrorMessages_Properties
	Label
	LabelTokenCssClass
	PropertyTokenCssClass
	RuntimeTokenCssClass
	SummaryLabelTokenCssClass
	ErrorFormatters_Using
	ErrorFormatterSkinID
	ErrorFormatter_Properties
	PopupView_ViewCmd
	PopupView_EditCmd
	PopupView_AddCmd
	PopupView_RenameCmd
	PopupView_DeleteCmd
	HintPopupView_Properties
	ShowRequiredFieldMarker
	Val_HiliteFields
	Val_OtherStyles
	NoErrorFormatter
	FocusOnChange
	FocusOnSubmit
	FocusAfterAlert
	ShowAlertOnChange
	ShowAlertOnSubmit
	AlertTemplate
	AlertErrorLeadText
	AlertErrorListStyle
	AlertShowsSummaryMessage
	DESPage_ChangeStyleOnControlsWithError
	DESPage_ControlErrorCssClass
	DESPage_ListErrorCssClass
	DESPage_CheckBoxErrorCssClass
	DESPage_CheckBoxECCMode
	DESPage_HiliteFieldsNearbyError
	DESPage_TextHiliteFieldsCssClass
	DESPage_NonTextHiliteFieldsCssClass
	BlinkOnChange
	BlinkOnSubmit
	ValidationGroups
	EnablerProperty
	EnabledProperty
	EnableClientScriptProperty
	Val_EventsThatValidate
	SupportsClientSideLookupByID
	SubmitThePageOverview
	SubmitThePage_Adding
	ValidateGroupMethod
	PageIsValid
	DESButtonsOverview
	Button_CausesValidation
	Button_Group
	RegisterSubmitControl
	SubmitBehavior_Class
	RegisterChildSubmitControls
	ChildSubmitBehavior_Class
	PrepareMicrosoftMenuControl
	RegisterBulletedListControl
	SubmitThePage_ClientSide
	DESPage_ConfirmMessage
	DESPage_CustomSubmitFunctionName
	DESPage_SubmitOrder
	PostPageValidationFunctionName
	PostValidationUpdateScript
	BestPractices
	UsingWithNativeControls
	GetPostBackEventReference
	GetPostBackClientHyperlink
	GetValidationGroupScript
	RegisterMenuControl
	ValSum_Using
	ValSum_Header
	ValSum_ErrorMessages
	ValSum_Footer
	ValSum_Adding
	ValSum_Properties
	ValSum_Group
	AutoUpdate
	ValSum_AutoUpdateFirstShows
	ValSum_ScrollIntoView
	HyperLinkToFields
	ValSum_RelatedControlDisplayMode
	CEM_Using
	CEM_Adding
	CEM_Properties
	CEM_Validators
	RFM_Adding
	RFM_Properties
	RFD_Adding
	RFD_Properties
	CultureInfoProperty
	DESPage_Browser
	JavaScriptEnabled
	DESPage_IsPostBack
	DESPage_AutoDisableValidators
	DESPage_AutoHideRequiredFieldMarker
	DESPage_EnableButtonImageEffects
	DESPage_BeforeValidation
	GlobalSettingsEditor
	DES_GetById
	DES_ParseInt
	DES_Trunc
	DES_SetInnerHTML
	DES_GetTextValue
	DES_GetSelIdx
	DES_GetByDTTBValue
	DES_FieldChanged
	DES_IsValid
	DES_ValidateGroup
	DES_FindAOById
	DES_SetEnabled
	DES_HideVal
	DES_UpdVal
	Troubleshoot_JavaScript

